Support The World's Smartest Network

Help the New York Academy of Sciences bring late-breaking scientific information about the COVID-19 pandemic to global audiences. Please make a tax-deductible gift today.

This site uses cookies.
Learn more.


This website uses cookies. Some of the cookies we use are essential for parts of the website to operate while others offer you a better browsing experience. You give us your permission to use cookies, by continuing to use our website after you have received the cookie notification. To find out more about cookies on this website and how to change your cookie settings, see our Privacy policy and Terms of Use.

We encourage you to learn more about cookies on our site in our Privacy policy and Terms of Use.

Greening the Tech Industry through Energy Savings

Greening the Tech Industry through Energy Savings

Binghamton University-SUNY

Read digital edition

In the digital age, no one has time to wait for data. When an Amazon customer searches for a book, or a Facebook user clicks to see the next picture in an album, he expects his query to be answered immediately. Likewise, a physician pulling up an electronic medical record expects vital patient information, instantly. Failed connections lead to dissatisfaction, no matter who the customer may be. To safeguard against even the briefest service outage, the tens of thousands of data centers in the United States have devised extremely resilient systems of redundancy—keeping businesses running smoothly, but at the cost of untold amounts of energy. Perhaps tech is not always as green as it seems.

A 2012 report in the New York Times found that 90% of energy pulled off the grid by data centers is wasted, and as big data gets ever bigger, and more and more information is stored on the cloud, energy demands are going to escalate. On an already overburdened national energy grid, data centers currently account for 2.7% of total national electricity consumption.

"It's staggering for most people, even people in the industry, to understand the numbers, the sheer size of these systems," data designer Peter Gross told the Times. "A single data center can take more power than a medium-size town."

At Binghamton University, State University of New York, a team of researchers is committed to slowing the pace of data center power usage. The university is one of several founding members of the Center for Energy-Smart Electronic Systems (ES2), a collaboration of universities and businesses whose long-term goal is to create green systems in a range of disciplines, from computer chips to smart buildings. For now, though, the men and women of ES2 are focusing on data centers, in hopes of helping the Internet live up to its green potential.

The National Science Foundation provided the infusion of funds necessary for Binghamton to join ES2, extending the university's long commitment to innovation in the field of electronics. The initiative is unique in its macro/micro approach—attacking long-term, industry-wide goals with smaller steps, like the reform in data center technology.

"A single data center can take more power than a medium-size town."

To better understand industry practices, the Binghamton arm of ES2 will soon make the leap into a new facility, a state-of-the-art home in upstate New York, designed to serve as a "living laboratory" for efficient server management.

"The center will address energy efficiencies in a way that has not been tackled before," says Bahgat Sammakia, director of ES2 and vice president for research at Binghamton. "By looking at energy efficiency problems from all angles and across many disciplines, the center will provide the kind of answers that leaders in the electronics industry are looking for. Each of the center's academic partners has expertise in a particular area, and by tapping into these individual strengths, we will collectively find the answers to some of the industry's most challenging practical problems."

Although part of ES2's approach to data center improvement is technology based, there is more to saving energy than building a better microchip. Just as important as the guts of a server is the way it is used, which means looking for ways to improve job scheduling, waste heat recovery, and resource management.

"The center takes a holistic approach," says Kanad Ghose, site director for ES2 Binghamton, "when it considers computing, thermal, and other challenges." But such innovation is useless if these more efficient practices are not adopted by industry. Binghamton's business partners, including IBM, Microsoft, Bloomberg, and Facebook, represent the supply chain for data centers, from those who make the machines to those who fill them. As ES2 produces advances in data storage, those groups have pledged to adopt the new technology as quickly as it becomes available.

Ghose says the group's goal is to improve energy efficiency and productivity of the country's data centers by 20% to 35%, a reduction that, if successful, would reduce the need for new power plants by as many as two every three years, while still meeting the nation's demand for data.

Once that goal is accomplished, the lessons learned in the data center campaign will be applicable in ES2's future endeavors, allowing researchers to find ways to increase energy efficiency across all areas of the electronics industry—from cell phones and tablets to gaming consoles and e-commerce.

"The whole," says Ghose, "is bigger than the sum of the parts."

Photo: Researchers stand in front of a Binghamton University data center.