Skip to main content

Blog Article

Your Creative Mind: Art Meets Science

What can you gain by venturing into the abstract?

Published August 1, 2012

By Diana Friedman
Academy Contributor

Image courtesy of Tarun via stock.adobe.com.

Creativity is a learned skill, not an innate ability; such is the premise of Tina Seelig’s new book, inGenius: A Crash Course on Creativity. But what of those deep-seeded cultural assumptions—that artists, writers, and musicians are born creative, while those in more technical fields (scientists, engineers, and mathematicians) are simply not? Seelig, the executive director of the Stanford Technology Ventures Program at Stanford University, finds the idea that creativity is simply a personality trait—you either have it or you don’t—laughable. “Think of math, or science, or dance…Yes, there are people who are naturally gifted in these fields, but most of the population learns these skills. It’s the same thing with creativity.”

Seelig believes that scientists and engineers—those working “at the frontier of knowledge”—can particularly benefit from expanding their creative capacity through purposeful exercises. “If you just perform the next logical experiment, you will make incremental progress. Breakthroughs require breakthrough thinking.” When working on large-scale problems that haven’t been solved before, such as global warming, creativity could be the key to finding solutions that work, says Seelig.

So, what can those in scientific and technical fields do to enhance their creativity? Seelig provides an easy-to-follow roadmap for enhancing creativity in her book. But she is not alone in her efforts to get more people to spend time on, and see the value in, fostering creativity. From professors who ask open-ended questions with multiple ways to solve a problem (a method Seelig endorses) to actors who teach improv classes for scientists, the intersection of science and creativity is getting some time in the spotlight.

Art vs. Science?

“The ancient Renaissance man could be fantastic at art and science, but today we like to separate the two,” says Rebecca Jones, a biochemistry PhD candidate and the public engagement officer at the University of Bristol in the United Kingdom. The common thinking that excellence in science and technical fields precludes a wealth of creativity, is entirely inaccurate, says Jones. “If you’re creative, you’re often better at science. Some of the best scientists I know have come up with more abstract ways of approaching a problem, instead of going the more obvious, logical route.”

But even scientists can get trapped in the notion that creativity has no place in the lab. “A lot of scientists went into science because they feel much more comfortable in a non-artistic environment. I’ve always had that artistic side, so I want other scientists to see themselves in that way too,” says Jones. Such was the impetus for the annual Art of Science Competition that Jones started at the University of Bristol in 2009.

Jones and colleagues collect science-related photographs from research scientists and display them in the medical building. Visitors then vote for their favorites. It took a year or so for the entrants to fully understand the point of the competition, says Jones. At first, many submitted their best research images—those that showed a good result, scientifically speaking. But as the competition gained traction, entrants began to understand that the images could be valuable for their visually striking nature, or for what they said about the life of the scientist.

The Power of Photography

Jones recalls a serene black and white photo that looks like a field of small wildflowers titled “My Beautiful Adversary.” In reality, it is a photo of mold growing on a sample—a nightmare for a scientist. But the photo became very popular with other scientists—they could relate to the subject but they also appreciated its aesthetic value. Another, a photo of a rack of test tubes, all bearing labels written in different, messy handwriting, was an antidote to the typical sleek scientific photos in magazines. But, says Jones, it drove home the point that science is largely a team endeavor, with many hands playing a role in a successful experiment.

“The goal is to give scientists an outlet for their creativity and to let them take joy and release in their work,” says Jones. Scientists at the University of Bristol have responded positively, with the competition getting more intense, and the images more artistic, each year.

“A lot of the entrants were really surprised to see how much their images stood out when they were shown in a group—they were so used to seeing them every day that they forgot how special they were. This allows them to see their work in a new way and get reinvigorated about their research.”

Where It Will Go, Nobody Knows

Valeri Lantz-Gefroh is a lecturer in the School of Journalism and a workshop coordinator for The Center for Communicating Science at Stony Brook University in New York. But in a word, she is an actor. She was one of three acting teachers, led by the well-known Alan Alda, to help build The Center for Communicating Science, a truly unique undertaking aimed at science students.

“Science affects every human being on the planet, but there’s a wall of misunderstanding between the general public and scientists,” says Lantz-Gefroh. The general public often thinks they are incapable of understanding science and, furthermore, that scientists aren’t willing to help them understand it, she says. Scientists, on the other hand, often do not sense the general public’s interest in their work.

So where does acting fit in? Lantz-Gefroh teaches improv, one of the more unusual classes at the Center, which aims to teach scientists, through credit-bearing classes, how to better communicate their work to various audiences. She has been pleasantly surprised by how receptive budding scientists have been to her courses. “I expected skepticism, but I have not gotten it at all.”

A Creative Process

Instead, what Lantz-Gefroh has gotten is the question, “What does this exercise relate to?” Improv exercises are, by nature, abstract. Students are often eager to know what, for instance, mirroring their partners’ movements with eyes open, then eyes closed, will teach them as it relates to their future careers. “I tell them, ‘It’s a creative process, you don’t always know where it is going to go’,” says Lantz-Gefroh. “If I say, it’s for X, then that’s the thing you’ll look for. But if I don’t say, then it could have a bunch of different effects I haven’t even thought about. All could have tremendous value; I don’t want to diminish the potential of the exercise.”

It is for this reason that Lantz-Gefroh likes working with scientists. “They like to quantify things, but they are also comfortable not knowing the answer. I tell them to look at the exercises as a creative investigation.” She is quick to stress that opening up the mind and allowing more abstract thinking is not only of benefit to scientists. “I think every person benefits from creative investigation.” However, she says, that for someone used to looking at the world on a sometimes microscopic level, taking a step back can be particularly beneficial.

Story of My Life

Enhancing creativity among professionals in science and technical fields certainly has personal and professional benefits for those in the field. But can getting scientists to think of their work in new ways also provide benefits to the general public? Ben Lillie, a high-energy physicist by training, and now director of The Story Collider, thinks so. The Story Collider, based in New York City, hosts informal storytelling events where people (both scientists and nonscientists) come together to tell true, science-related stories, usually in a bar.

“I think of us primarily as an arts organization, which is a little weird since we are tied so closely to science,” says Lillie. “Our goal is the same as any arts organization: to explore what it means to be human.” And because the human experience is being so drastically changed by science, “that’s something we need to explore in a cultural context, to explore how that affects us.”

Lillie focused on storytelling as the method for exploration because he believes that sharing stories connect us with each other and help us to see that we are not alone. “We give people a way to see that science is a part of their everyday lives, that it’s not this big mystical thing you have to go into a laboratory to even think about.”

Personalizing and Demystifying Science

Lillie recalls a neuroscientist who told a story about his father having a stroke. The neuroscientist talked about the details of what was happening in his father’s brain (and related them in lay terms to the audience), but he also related all of his personal emotions that went along with each aspect of his father’s illness. This, says Lillie, is how science gets personalized and demystified.

While The Story Collider focuses on true stories, the creativity comes in the telling of them. The Story Collider staff helps storytellers craft their tales, cutting out the extraneous bits and focusing on the parts that move the story along or convey powerful thoughts and emotions. It is an exercise that’s very different than the ones most scientists do in their labs. And for nonscientists, it is valuable and different to take ownership of a story relating to science—learning that the personal is powerful, even in the realm of science.

“I think scientists need some space to step aside from their work, to go do something completely different and come back to it.” Lillie says that storytelling is not necessarily the answer; it is just one creative medium out of an infinite number that can provide benefits, both known and unknown. What might you gain from a creative investigation of your own? There’s only one way to find out.

This story originally appeared in the Summer 2012 issue of The New York Academy of Sciences Magazine.


Author