
Winner of the Junior Academy Challenge – Fall 2024 “Upcycling & Waste Management”
Sponsored by Royal Swedish Academy of Engineering Sciences (IVA)
Published May 16, 2025
By Nicole Pope
Academy Education Contributor
Team members: Vedeesh B. (Team Lead) (India), Livia G. (Sweden), Muhammad Q. (New Jersey, United States), Syed R. (Florida, United States)
Mentor: Christine Yu (Hong Kong)

Our world’s growing waste problem is largely driven by the production and disposal of short-lived products, creating a “use-and-dispose” culture. The mass manufacturing of new products consumes significant resources such as raw materials, water, and energy while generating greenhouse gasses, chemical emissions, and other pollutants. Even when products are recycled, the costs remain high due to the energy and processes needed for collection, sorting, and recycling. As a Fall 2024 Innovation Challenge, students were tasked with designing a solution to reduce waste generation by encouraging long-term product use and taking into account product design, business model, and societal behaviors.
Two Overlooked Sources of Pollution
This international team of high-school students collaborated online to address two sources of waste and pollution that are often overlooked: human hair and chicken feathers. Through their research, the Junior Academy challenge participants discovered that every year, hair salons and barbershops worldwide discard 300,000 tons of human hair while the poultry industry generates four billion kilograms of feathers. When discarded in landfills, hair releases methane, a gas 25 times more potent than carbon dioxide, while incineration of these waste products directly contributes to greenhouse gas emissions and increases CO2 levels. Yet both these materials are rich in keratin and offer largely untapped resources.
The students’ solution, The Last Strand, focuses on the considerable potential for upcycling hair and feathers by turning the rich biological elements they contain into high-quality, bio-derived amino acids supplements. “With our mentor Christine’s help, I developed better research techniques and uncovered valuable studies, allowing me to contribute more effectively to the project,” says team lead Vedeesh, who says he also honed his leadership skills in the course of this challenge.“ This process also deepened my understanding of genetic modification and the structure of human hair, concepts that were entirely new to me before this experience.”
The Growing Demand for Dietary Supplements
The team initiative responds to the growing demand for dietary supplements, particularly Branched-Chain Amino Acids (BCCAs), which are beneficial not only for athletes but also people who suffer from a decreased immune system, digestive problems, and various other health issues. In addition, it supports a circular economy that simultaneously reduces waste and turns discarded materials into a valuable resource. “At the core of this whole project lies the extraction of keratinases from hair, which combines, in beautiful ways, the precision of science with the principles of sustainability, and weaves together a powerful story of innovation and resourcefulness,” says team member Muhammad. “Hair is not a life byproduct, but a strong and intricate structure fully packed with keratin, one of those proteins which have great industrial and biological applications.”

The students outlined a process that first involves the collection of protein-rich hair and feathers from hair salons and poultry farms, and cleaning them to remove oils, dirt, and other contaminants. The next steps entail the use of sodium sulfide and enzymatic hydrolysis to break down the keratin and convert it into amino acids. Advanced filtration techniques are then employed to purify and separate essential amino acids like leucine, isoleucine, and valine before drying them. The method identified by the students proved cost-effective, potentially reducing the production cost of amino acid supplements by 50% and setup costs by up to 90% compared to existing systems, while the resulting products could be sold between $25 and $75 per kilogram, therefore offering a competitive alternative to current production systems. In addition, the team members also found that their process generates valuable byproducts, such as lipids, which could also be sold to industries like soap manufacturing. This could further offset costs and enhance the project’s sustainability.
A Transformative Approach to a Global Waste Problem
“During this challenge and through our research I didn’t only learn about the technicalities of turning discarded hair into supplements, I also learned a lot about production costs, formulating a budget, and more,” says Livia. “I was also positively surprised by the receptiveness of the stakeholders in Florida. My fantastic teammate, Syed, was able to reach out to almost 15 hair salons in his local Florida and their impact was incredibly valuable to our project.” In addition, Syed reached out to 15 poultry farms in his state, who responded positively to the students’ project and declared their willingness to contribute to such an effort. Through these stakeholders, the project could collect approximately 30 tons of keratin waste monthly from local areas.
“From the initial brainstorming sessions to collaborating with teammates and our mentor, every step was a unique learning experience. I contributed by leveraging my background in (gene technology) CRISPR and gene editing to understand and refine the chemical and enzymatic processes for amino acid extraction,” says teammate Syed. “Engaging with stakeholders in Florida gave me a deeper appreciation for how science can drive real-world change. Most importantly, I’m proud of how we came together as a team to create something impactful, combining our strengths to address a critical global issue.”
The team members believe their solution could be fully implemented within five years. They are proud to have developed a project that promotes scientific innovation and sustainability. Their solution offers a transformative approach to a global waste problem that also contributes to human health and economic resilience.
Learn more about the Junior Academy.