Skip to main content

AI and Big Data to Improve Healthcare

Am image of a stethoscope and a tablet displaying a health/medical app.

The next decade will be a pivotal one for the integration of AI and Big Data into healthcare, bringing both tremendous advantages as well as challenges.

Suchi Saria, PhD

Published May 1, 2019

By Sonya Dougal, PhD

One of the most common causes of death among hospital patients in the United States is also one of the most preventable — sepsis.

Sepsis symptoms can resemble other common conditions, making it notoriously challenging to identify, yet early diagnosis and intervention are critical to halting the disease’s rapid progress. In children, for each hour that sepsis treatment is delayed, the risk of death increases by as much as 50 percent.

Novel innovations, such as the one pioneered by Suchi Saria, director of the Machine Learning and Healthcare Lab and the John C. Malone Assistant Professor at Johns Hopkins University, are helping to reverse this trend. In 2013, Saria and a team of collaborators began testing a machine learning algorithm designed to improve early diagnosis and treatment of sepsis.

Using troves of current and historical patient data, Saria’s artificial intelligence (AI) system performs real-time analysis of dozens of inpatient measurements from electronic health records (EHRs) to monitor physiologic changes that can signal the onset of sepsis, then alert physicians in time to intervene.

“Some of the greatest therapeutic benefits we’re going to see in the future will be from computational tools that show us how to optimize and individualize medical care,” Saria said. She explained that the emergence of EHRs, along with the development of increasingly sophisticated AI algorithms that derive insights from patient data, will fuel a seismic shift in medicine — one that merges “what we are learning from the data, with what we already know from our best physicians and best practices.”

Nick Tatonetti, PhD

Electronic Health Records: A Gold Mine for Computer Scientists

EHRs have become a data gold mine for computer scientists and other researchers who are tapping them in ways designed to improve physician-patient encounters, inform and simplify treatment decisions, and reduce diagnostic errors. Like many other technological advances, though, there are those physicians who regard EHR systems with less enthusiasm.

A 2016 American Medical Association study revealed that physicians spend nearly twice as much time engaged in EHR tasks than they do in direct clinical encounters. Physician and author Atul Gawande recently lamented in The New Yorker that “a system that promised to increase my mastery over my work has, instead, increased my work’s mastery over me.”

Yet, data scientist Nicholas Tatonetti, the Herbert Irving Assistant Professor of Biomedical Informatics at Columbia University envisions a day when such AI algorithms will enable physicians to deepen their interaction with patients by freeing them from the demands of entering data into the EHR. Tatonetti has designed a system using natural language processing algorithms that takes accurate notes while physicians talk with patients about their symptoms. Like Saria’s AI system, Tatonetti’s takes advantage of the vast amount of data captured in EHRs to alert physicians in real time to potentially dangerous drug interactions or side effects.

Unknown Interactions

Anyone who has filled a prescription is familiar with the patient information leaflet that accompanies each medication, detailing potential side effects and known drug interactions. But what about the unknown interactions between medications?

Ajay Royyuru, PhD

Tatonetti has also developed an algorithm to analyze existing data in electronic health records, along with information in the FDA’s “adverse outcomes” database, to tease out previously unknown interactions between drugs. In 2016, he published a study showing that ceftriaxone, a common antibiotic, can interact with lansoprazole, an over-the-counter heartburn medication, increasing a patient’s risk of a potentially dangerous form of cardiac arrhythmia.

As data-driven AI techniques become more accessible to clinicians, the treatment of conditions both straightforward, like hypertension, and highly complex, such as cancer, will be transformed.

A Paradigm Shift in Physician-Patient Interactions

Ajay Royyuru, vice president of healthcare and life sciences research at IBM and an IBM Fellow, explained that, “when a practitioner makes a patient-specific decision, the longitudinal trail of information from thousands of other patients from that same clinic is often not empowering that physician to make that decision. The data is there, but it’s not yet being used to provide those insights.”

In the coming years, physicians and researchers will be able to aggregate and better utilize EHR data to guide treatment decisions and help set patients’ expectations.

The ability to draw on information from tens or even hundreds of thousands of patients, in addition to a physician’s own experience and expertise, could represent a paradigm shift in physician-patient interactions, according to Bethany Percha, assistant professor at the Icahn School of Medicine at Mount Sinai, and CTO of the Precision Health Enterprise, a team that turns AI research into tangible products for the health system.

“Big Data offers us the promise of using data to have a real dialogue with patients — if you’re newly diagnosed with cancer, it means giving people a realistic, data-driven assessment of what their future is likely to be,” she said.

Biases and Pitfalls

Despite the surge of interest and investment in AI over the past two decades, significant barriers to its widespread application and deployment in healthcare remain.

AI systems that tap current and historical patient health data risk reinforcing well-noted biases and embedded disparities. Medical research and clinical trials have long suffered from a lack of both ethnic and gender diversity, and EHR data may reflect patient outcomes and treatment decisions influenced by race, sex or socioeconomic status. AI systems that “learn” from datasets that include these biases will inherently share and perpetuate them.

Percha noted that greater transparency within the algorithms themselves — such as systems that learn which features an algorithm uses to make a prediction — could alert users to obvious examples of bias. Removing bias from AI algorithms is a work in progress, but the research community’s awareness of the issue and efforts to address it mirror a greater push to eliminate bias and decrease inequities in medicine overall. Optimistically, Percha noted that Big Data and AI may ultimately help create a more level playing field in healthcare delivery.

“Clinical decisions made on the basis of data have the potential to be much more standardized across different health facilities, so people who are in a rural area, for example, might have access to the same decision-making benefits as someone in a city,” she said.

Patient Data Privacy

Ensuring patient data privacy is another hot-button issue. Training artificial intelligence systems requires access to massive troves of patient data. Despite the fact that this information is anonymized, some patient advocates and bioethicists object to this access without explicit permission from the patients themselves.

Another privacy issue looms equally large: how to safely collect and protect the streams of potentially useful health data generated by wearable devices and in-home technologies without making patients and consumers feel, in Royyuru’s words, “like they are living their lives in front of a camera.” Studies have shown that data from smartphone apps can provide valuable information about the progression of certain diseases, such as Parkinson’s.

Wearables and in-home IoT devices can also extend the realm of clinical observation well beyond the doctor’s office, revealing, for example, important details about a Parkinson’s patient’s ability to complete the tasks of daily living. Yet Royyuru emphasizes that unless patients trust that their data will be kept private and ethically utilized, these technologies will fizzle long before they’re widely adopted.

Building Trust

The next decade will be a pivotal one for the integration of AI and Big Data into healthcare, bringing both tremendous advantages as well as challenges. Some applications of AI, such as image recognition, are already especially well-suited to healthcare — AI algorithms often match or even outperform radiologists in interpreting medical images — while others are far from ready for widespread use.

Saria, who has deployed her system successfully at multiple hospitals says, “physicians often greet news of AI breakthroughs with skepticism because they’re being over-promised results without clear data demonstrating this promise. True integration and adoption of AI requires not just careful attention to physician workflows, but transparency into exactly how and why an algorithm has arrived at a particular recommendation.”

Rather than replacing or challenging a physician’s place in the healthcare ecosystem, Saria believes that AI has the ability to lighten the load, and as algorithms improve, generate diagnostic and treatment recommendations that physicians and patients can both deem trustworthy.

“We are still figuring out how to make real-time information available so that it’s possible for physicians or expert decision-makers to understand, interpret and determine the right thing to do — and to do that in an error-free way, over and over again,” Saria said. “It’s a high-stakes scenario, and you want to get to a good outcome.”

Mark Shervey, Max Tomlinson, Matteo Danieletto, Sarah Cherng, Cindy Gao, Riccardo Miotto, and Bethany Percha, PhD, Mount Sinai Health System, Icahn School of Medicine at Mount Sinai.

The Cutting Edge: There’s An App for That

A graphic illustration of a smart watch and its various medical/health applications.

Researchers are making greater use of the increasing computational power found in smartphones. This means apps may soon be able to help improve human health outcomes.

Published May 1, 2019

By Charles Cooper

The Apple Watch Series 4 helps users stay connected, be more active and manage their health in powerful new ways.
Photo credit: Apple Inc.

Apple CEO Tim Cook has major ambitions to “democratize” the health sector. In a recent interview with CNBC, Cook said that “health will be the company’s greatest contribution to mankind.” He’s also enlisted an important ally to help Apple make that happen.

Atrial fibrillation, which affects 33 million people worldwide, can lead to blood clots, stroke and heart failure. But later this year, Johnson & Johnson (J&J), which developed a heart health application, will carry out a study of volunteer patients 65 and older wearing an Apple Watch to understand whether smartphone technology can help enhance the accuracy and speed of clinicians’ efforts for earlier detection, diagnoses and treatment of the malady.

“Five years from now — and certainly within a decade — wearable devices will be an integral part of healthcare diagnosis and delivery,” said Paul Burton, MD, PhD, FACC, Vice President, Medical Affairs, Janssen Scientific Affairs, LLC, noting that the app will work in conjunction with the Apple Watch Series 4’s irregular rhythm notifications and ECG feature.

Real-Time Data

The diodes on the back of an Apple Watch Series 4 essentially look for a pulse to check blood flow and applies an algorithm to determine whether the pattern pulses are irregular. It has the capability to take a high-fidelity ECG reading which is then sent to a physician. That kind of real-time data is crucial when you consider that around 20 percent of individuals who experience a stroke are not aware of their underlying AFib condition.

The widening availability of digital tools, paired with advances in technologies like artificial intelligence and machine learning, is raising hopes that history will repeat itself. In the last decade, business applications helped organizations become more efficient and to better engage with their customers. Now researchers are making greater use of the increasing computational power found in smartphones and it’s no longer a stretch to imagine a future in which there’s an app for nearly every step in the research process.

Burton expressed excitement at the potential of apps to make changes in behavior and improve health outcomes in ways that were unimaginable less than a decade ago. “I think this is an amazingly exciting point bound only by our imagination. I think the possibilities are endless,” Burton said. “AFib is treatable but you need definitive, compelling data to really make a difference in healthcare.” At the same time, Burton cautions that “apps don’t work if people download them but can’t be bothered to use them.” The point being that all the technology in the world won’t help, if the people who need it most don’t incorporate the tools into their lifestyles.

Promises and Reality Checks

That challenge was faced head-on by University of Southern California research scientists Susan Evans and Peter Clarke, as they tested out a mobile app they developed to help low-income people who use food pantries to obtain fresh vegetables, which, while often plentiful in supply, may be limited in variety.

Though the use of health-related mobile apps are now common, the promise and the performance often don’t match up. Clarke noted that fewer than one percent of the estimated 330,000 apps available on the Apple and Android download stores have been subjected to rigorous testing for effectiveness.

“Getting people to incorporate devices and apps into their lives is a whole separate science,” he said.

In developing their app, Evans and Clarke made sure the design incorporated user input early in the process, just as if they were creating a consumer app. For example, even though food banks collect fresh food and vegetables, many low income people aren’t incorporating those offerings into their diet because they may not know how to cook and/or preserve the food that’s available.

Evans and Clarke, who started the project with certain assumptions about what was needed, were forced to refine their ideas about how to change dietary habits and that came only after extensive field research and speaking with the people they hoped would ultimately use the app.

“We had to customize the app in order to meet clients’ needs and not impose this on them from the top,” said Evans. “It took years of tinkering. In terms of functionality and navigation, we designed it over and over again to try and get it right.”

Technology Is Only as Good as the User

An app recipe for broccoli burritos. This user wanted Latino-flavored and kid-friendly recipes.

As scientists and researchers struggle with the alchemy of user engagement, they have the advantage of being able to lean on the experience of software developers working in the consumer and business markets. Unfortunately, there’s no one size-fits-all answer explaining how to get a target audience not just to download the applications, but to also use them consistently.

University of Michigan computer scientist Kentaro Toyama struggled to understand the nuances surrounding successful user engagement when he worked as assistant managing director of Microsoft Research in India. Toyama’s team built several different digital apps in areas like healthcare and social services that performed well in the labs. But few survived the test of time after they were released to the public.

“When we did these research projects in relatively constrained contexts, we could show how technology has a positive impact,” he said. “However, when we scaled those projects, we found that it did not have the same impact. Technology can be extremely good at delivering what people want,” he said. “It’s not so good when it comes to encouraging [people] to become better versions of themselves.”

Marissa Burgermaster would probably agree. As an elementary and middle school teacher she became interested in how food and nutrition influenced the lives of the students she taught. Ultimately she decided to pursue a doctorate in behavioral nutrition.

Nutrition Education Interventions

During the course of her research, she also discovered a seeming contradiction: As a whole, nutrition education interventions didn’t produce tremendous results, but anecdotally they did appear to work for at least some students.

“What kept coming across from the data was … that different groups of kids … responded quite differently to the intervention,” she said. “That explained why an average intervention didn’t get great results — even though for some kids, it was exactly what they needed.”

Burgermaster said it underscored the importance of accumulating as much data as possible before the fact. She went on to do her post-doctoral research in biomedical informatics and nowadays teaches in the Department of Nutritional Sciences at the University of Texas, Austin. Burgermaster kept the lesson in mind when she set out to develop an app that provides nutrition information to underserved communities.

“The reason why I was drawn to intervening via technology was not just to use data, but also it’s about meeting people where they are and get them to where they need to be. And let’s be honest: people are stuck in their phones,” she said.

The app, which is rolling out this spring in Austin, offers users personalized recommendations with tailored nutritional recommendations and interventions to help them reach their goals. Like J&J’s test project with Apple, it’s another indication of the potential for health practitioners to use smartphone and wearable technology to generate data about their patients to help with diagnoses.

A Mobile Lab in Every Home

Mobile Instruments — Ozcan Lab

When Aydogan Ozcan talks about the potential of smartphone apps to effect transformative changes, don’t expect to hear him riff about cool new ways to arrange virtual candies on a screen or share adorable cat videos. He has a far bigger goal in mind.

Over the years, Ozcan’s lab has focused on developing field-portable medical diagnostics and sensors for resource-poor areas, coming up with relatively inexpensive ways to equip smartphones with advanced imaging and sensory capabilities that once were only found in expensive high-end medical instruments.

In the last decade, he has come up with ways to exploit the functionality available in contemporary smartphone hardware and software to further bio- and nano-photonics research. For example, one technique allowed a smartphone to produce images of thousands of cells in samples that were barely eight micrometers wide — and at the cost of less than $50 in off-the-shelf parts.

More recently, Ozcan demonstrated how the application of deep learning techniques can generate smartphone images that approach the resolution and color details found in laboratory-grade microscopes using 3-D printed attachments that cost less than $100 apiece.

“Instrumentation is very expensive. The cost of advanced microscopes, for example, can run to hundreds of thousands of dollars,” said Ozcan, a professor of electrical and computer engineering and bioengineering at the UCLA Samueli School of Engineering, and a three-time Blavatnik National Awards for Young Scientists finalist.

Smartphones: Mobiles Medical Labs

Smartphones are relatively inexpensive with more than 3 billion people using them around the world, encouraging Ozcan to envision a future where resource-poor nations will have expanded access to advanced measurement tools, that provide data for local residents to better treat medical conditions. Think of the average smartphone one day functioning as a mobile medical lab.

Ozcan also believes that people in their homes will soon be using a growing assortment of advanced mobile technologies and apps for preventive care, particularly when it comes to monitoring an aging patient or someone with a chronic condition.

“In the U.S., five percent of patients cause 50 percent of health expenditures per year. We can reduce that cost with better preventive care but for that, the home needs better technology. We should be able to provide that with mobile cost-effective systems so you can do some of the measurements that would normally require sending people to the hospital to take a sample, wait for the results and then go to the pharmacy with a prescription.”

While we may not be there yet, the world is fast approaching that tipping point where mobile apps lead to a veritable explosion of powerful, cost-effective alternatives to some of the most advanced biomedical imaging and measurement tools now in the market.

Also read: Tech’s Messy Challenge: Finding the Rx for Global E-Waste


About the Author

Charles Cooper is a Silicon-valley based technology writer and former Executive Editor of CNET.

Citizen Science in the Digital Age: Get Out the Maps

An over-the-shoulder shot of a person driving, using an iPhone as a dashcam.

Mapillary aims to make the world a smaller place with maps that continually update street-level conditions.

Published May 1, 2019

By Robert Birchard

The term “citizen science” first entered the Oxford English Dictionary in 2014, but it describes a long standing tradition of collaboration between professional and amateur scientists. Perhaps no field is as closely associated with citizen science as astronomy, where amateur stargazers continue to sweep the skies for unidentified heavenly bodies. Today, with the advent of smartphone technology, even more fields of scientific inquiry are open to the curious amateur.

Jan Erik Solem, CEO and Founder of Mapillary

Making the World a Smaller Place

With more than 440 million images from more than 190 countries, the street-level imagery platform Mapillary is trying to make the world a smaller place with maps that continually update street-level conditions.

“Carmakers can use the data to help train their autonomous systems — essentially ‘teaching’ cars to see and understand their surroundings — and mapmakers to populate their maps with up-to-date data. Cities can use it to keep inventories of traffic signs and other street assets among other things,” explained Jan Erik Solem, PhD, CEO and founder of Mapillary.

The data is collected by contributors who upload it onto Mapillary’s platform.

“The traditional approach of mapping places include sending out fleets of cars to map cities and towns, but these places change faster than mapping corporations are able to keep up with,” Solem added.

Simpe Tools Like Mobile Phones and Action Cameras

“Using simple tools like mobile phones or action cameras, anyone can go out, map their town and have data instantly generated from the images to update maps everywhere,” said Dr. Solem. “No one else collects data in this collaborative way.” The data is free for educational and personal use he added. “The company is closely tied to the research community and we recognize how helpful it is for researchers to have access to the kind of data that’s hosted on our platform,” explained Dr. Solem. “Mapillary is a commercial entity, but we are driven by research and this is part of our way of paying it forward.”

The data that Mapillary receives is verified through computer vision technology and GPS coordinates, integrated with the mobile phones and cameras that map the roads. “Our computer vision technology detects and recognizes objects in images including things like traffic signs, fire hydrants, benches and CCTVs. Having diverse imagery from all over the world means we have a rich training dataset that enables us to build some of the world’s best computer vision algorithms for street scenes.”

Mapillary’s mobile app allows for instant updates with the latest road conditions.

Keeping Citizens in Science

Citizen science requires enthusiastic participation of the public, but how can researchers keep the public engaged? This question was recently considered in a paper from Maurizio Porfiri, PhD, Dynamical Systems Laboratory at New York University titled, Bring them aboard: Rewarding participation in technology-mediated citizen science projects.”

The team hypothesized that monetary rewards and online or social media acknowledgments would increase engagement of participants.

“People contribute to citizen science projects for a variety of different reasons,” said Jeffrey Laut, PhD, a postdoctoral researcher in Dr. Porfiri’s lab. “If you just want to contribute to help out a project, and then you’re suddenly being paid for it, that might undermine the initial motivation.”

“For example, one of the things we point out in the paper is that people donate blood for the sake of helping out another human,” explained Dr. Laut. “Another study found that if you start paying people to donate blood, it might decrease the motivation to donate blood.”

Proper Rewards for Participation

If a citizen science project is suffering from levels of participation, researchers need to carefully choose the level of reward.

“I think with citizen science projects the intrinsic motivation is to contribute to a science project and wanting to further scientific knowledge,” said Dr. Laut. “If you’re designing a citizen science project, it would be helpful to consider incentives to enhance participation and also be careful on the choice of level of reward for participants.”

The technology used and scope of information collected may have changed, but the role remains as important as ever.

“It is important that citizens understand the world in which they live and are capable of making informed decisions,” said Ms. Prieto. “It’s also important that all people understand science, especially to combat disinformation. From this point of view citizen science is vital and a needed contributor to the greater field of science.”


Learn more about citizen science:

Citizen Science in the Digital Age: Learning Across the Globe

A shot of planet Earth taken from space.

The GLOBE program aims to understand how the Earth’s spheres interact as a single system.

Published May 1, 2019

By Robert Birchard

The term “citizen science” first entered the Oxford English Dictionary in 2014. It describes a long-standing tradition of collaboration between professional and amateur scientists. Perhaps no field is as closely associated with citizen science as astronomy. Here amateur stargazers continue to sweep the skies for unidentified heavenly bodies. Today, with the advent of smartphone technology, even more fields of scientific inquiry are open to the curious amateur.

Learning Across the Globe

The Global Learning and Observations to Benefit the Environment (GLOBE) program is an environmental science and education program active in over 120 countries. It seeks to understand how the Earth’s atmosphere, biosphere, hydrosphere and pedosphere interact as a single system.

“The data we collect varies depending on our research,” explained Ana Prieto a former high school science teacher and GLOBE program volunteer in Argentina. “We’re currently taking land cover measurements in the field, and in the summer we will start taking hydrology measurements. This provides students with first-hand scientific knowledge.”

Collected data is uploaded to the GLOBE database using their customized app.

“The GLOBE protocols (instructions on how to take measurements) are updated and respond to a range of opportunities for measurement and research,” said Ms. Prieto. “It teaches students to use measuring devices, perform physical-chemical analysis, make estimations, pose questions, make hypotheses and design investigations. In short STEM is applied to real-world problems.” For non-GLOBE members the GLOBE Observer allows any citizen scientist enthusiast to collect and send data from GLOBE countries.

Data with Various Applications

The data is used for a variety of purposes.

“We collaborate with NASA Scientists and Science Missions,” explained Tony Murphy, PhD, GLOBE Implementation Office Director. “One example is the August 2017 North American eclipse. NASA scientists are looking at the temperature data collected. They are examining the impact of the eclipse on air temperature and solar radiation. Another use is data gathered on mosquito larvae detection and identification, which is then used to help local communities combat the spread of mosquito-borne diseases by identifying and eliminating sources of standing water, such as containers and spare tires, in which mosquitoes breed.”

The data collected by GLOBE is verified in their system of checks and balances. “We’re looking primarily for outliers,” explained Dr. Murphy. “There’s a range of acceptability for the data in different protocols. Also, we have had scientists look at particular data sets and they found that the data is, for the most part, accurate.” He concluded, “It’s important to get people involved, get them outside, using technology in a positive way for an educational purpose.”

Keeping Citizens in Science

Citizen science requires enthusiastic participation of the public, but how can researchers keep the public engaged? This question was recently considered in a paper from Maurizio Porfiri, PhD, Dynamical Systems Laboratory at New York University titled, Bring them aboard: Rewarding participation in technology-mediated citizen science projects.”

The team hypothesized that monetary rewards and online or social media acknowledgments would increase engagement of participants.

“People contribute to citizen science projects for a variety of different reasons,” said Jeffrey Laut, PhD, a postdoctoral researcher in Dr. Porfiri’s lab. “If you just want to contribute to help out a project, and then you’re suddenly being paid for it, that might undermine the initial motivation.”

“For example, one of the things we point out in the paper is that people donate blood for the sake of helping out another human,” explained Dr. Laut. “Another study found that if you start paying people to donate blood, it might decrease the motivation to donate blood.”

Proper Rewards for Participation

If a citizen science project is suffering from levels of participation, researchers need to carefully choose the level of reward.

“I think with citizen science projects the intrinsic motivation is to contribute to a science project and wanting to further scientific knowledge,” said Dr. Laut. “If you’re designing a citizen science project, it would be helpful to consider incentives to enhance participation and also be careful on the choice of level of reward for participants.”

The technology used and scope of information collected may have changed, but the role remains as important as ever.

“It is important that citizens understand the world in which they live and are capable of making informed decisions,” said Ms. Prieto. “It’s also important that all people understand science, especially to combat disinformation. From this point of view citizen science is vital and a needed contributor to the greater field of science.”


Learn more about citizen science:

Law Experts Give Advice for Scientific Research

A dramtically lit gold justice scale backlit an a dark background - 3D render

With a bit of forethought, researchers can avoid the pitfalls of modern intellectual property management and data security.

Published May 1, 2019

By Alan Dove, PhD

Jim Singer

Google Docs. Open notebooks. The Internet of Things. Open source software. Cloud storage. For researchers, the ever-expanding world of digital data handling tools seems like a theme park built just for them. For intellectual property lawyers, security experts and technology transfer managers, however, it can look more like a house of horrors.

Scientists focused on their projects often set up collaborations, configure networked data-gathering equipment and write software with little thought about patents, copyrights or liability. Those choices can come back to haunt them years later. However, researchers can avoid many of the pitfalls of modern intellectual property management and data security with a bit of forethought.

The Other Kind of IP Address

The original intent of the internet was to facilitate scientific collaborations over a single network for defense department projects at multiple institutions, and it still excels at that, subject to caveats about data security.

“Collaboration has always occurred across research institutions, [but] online collaboration has made it happen more quickly,” says attorney Jim Singer, chair of the intellectual property department at the law firm Fox Rothschild in Pittsburgh, Pa. Singer adds that “often what we see is that the collaboration occurs … before the researchers have considered that they might have some intellectual property that’s worth protecting.”

Even simple online collaborations can lead to legal quagmires. “If you’re collaborating using, say, Google Docs … what you’re left with can be a joint work where it’s not clear what each party owns, and in fact, you end up with a co-ownership situation,” says Jeremy Pomeroy, an intellectual property attorney and founder of the Pomeroy Law Group in New York City. To be clear, that’s not always a good thing. “Often clients like the idea of joint ownership, it sounds friendly, [but] they don’t understand the implications of that,” says Pomeroy.

Joint Ownership of a Copyright

Jeremy Pomeroy

Without an agreement to the contrary, there is joint ownership of a copyright of “a work prepared by two or more authors with the intention that their contributions be merged into inseparable or interdependent parts of a unitary whole.” (17 U.S. Code § 101). Co-inventors on a patent are all considered equal contributors, each able to license or sell the invention however they like. Worse, it may not be up to the scientists to decide who to include on that list.

“Patent law decides who is an inventor in a patent application, and joint inventorship means joint ownership. If you’re claiming something in the patent application and a collaborator contributed anything to those claims, then that collaborator must be named as an inventor,” says Singer. A minor contributor could wield outsized influence over the fate of the invention.

Cloud-based storage and high-speed connections also make it easy to collaborate across continents and sometimes conflicting legal systems. Singer says that the U.S. Patent Act states that if you invent something in the U.S., you must file your patent application first in the U.S. before filing in other countries. That would be simple enough if China, India and other nations didn’t have similar types of requirements. Even if all of the scientists involved work for the same institution or company, “the question becomes ‘where can you file the patent application first?’” Singer says.

The rise of rapid publication platforms, such as preprint servers, has added yet another twist. Singer explains that the U.S. gives inventors a one-year grace period to file a patent after describing an invention in a publication, but most other nations don’t. Once the paper is published, the invention becomes unpatentable. “I’ve seen inventors lose international patent rights because of that,” he warns.

Officers Are Standing By

Andy Bluvas

While explaining the litany of risks inherent in collaboration, intellectual property experts emphasize that effective protection can be as easy as having each collaborator contact their institution’s technology transfer office as soon as the project begins. That office can then ensure appropriate allocation and documentation of collaborators’ respective intellectual property rights. The call will likely be well received. “We routinely have to educate new faculty members, [and] something we harp on is that before you put anything online you should come and talk to us first,” says Andy Bluvas, a technology commercialization officer at the Clemson University Research Foundation (CURF) in  Clemson, S.C.

One of the most common collaborative activities online, sharing computer code, involves shifting legal nuances that many researchers don’t know about. In 2014, the U.S. Supreme Court ruling in Alice v. CLS Bank invalidated hundreds of software patent claims and made patenting new code much harder. The expression of ideas in software can still be subject to copyright protection, but it requires a different legal approach.

Scientists and engineers working on technologies for the “Internet of Things” (IoT) are also discovering complex interactions between patents, copyrights and product development cycles. “Usually they release the technology or the products with some sort of software inside, and then what happens is they incrementally improve it,” says Bluvas. He recommends that researchers working on those types of projects bring their attorneys aboard to keep the software and hardware designs aligned with the legal code.

Reusing Source Code

Chris Gesswin

The common programming practice of reusing source code can cause other problems. “We’ll have researchers that borrow from multiple different packages of software, and they may be open source or they may be proprietary,” says Chris Gesswein, executive director of CURF. Open source software allows such borrowing, but different open source licenses place different restrictions on how the borrowed code can be used, and proprietary software has even stricter limits. Also, use of open source code may, under the terms of the license, cause the entire software package to become subject to the license’s open source requirements. The result can be software covered by multiple conflicting licenses, making it difficult or impossible to commercialize.

Academic researchers may be reluctant to involve administrators in their work, but technology transfer officers share the scientists’ priorities. “No matter what, our goal is to get [scientists’ results] out there … in peer-reviewed journals,” says Bluvas. Patent and copyright filings usually proceed faster than research journals’ publication cycles, so scientists don’t have to choose between timely publication and protecting their intellectual property.

Nonetheless, a majority of investigators don’t take advantage of the technology transfer officers’ expertise. Gesswein estimates that only 15 to 25 percent of Clemson’s research faculty interact with his office.

Who Let the Data Out?

Privacy laws present another challenge for many projects, whether researchers want to know about them or not. “I appreciate more than anybody that scientists don’t want to think about stuff like this, they just want to do the science,” says attorney Mark McCreary, chief privacy officer at Fox Rothschild. But ignorance of privacy laws can have serious consequences, especially for multinational collaborations.

Mark McCreary

McCreary points to the European Union’s recent implementation of the General Data Protection Regulation (GDPR) as an example. The law includes a controversial “right to be forgotten,” which allows for medical research exceptions where individuals may rescind their consent for the use of their data. Subjects could retroactively withdraw from a biomedical study, and researchers would have to delete the associated data, but this exception is, as yet, untested and it is unclear if a narrow reading could lead to invalidated studies.

Failure to comply with such rules can be costly; the maximum fine for a GDPR violation is four percent of global revenue from a project, or 20 million Euros, whichever is greater. “You’d have to really be a bad actor [to incur] something like that, but it’s there, it’s a possibility,” says McCreary.

An Obligation to Protect Personal Data

Scientists may also have an obligation to protect the privacy of personal data, and cloud-based tools raise the risk of a breach. Hackers are unlikely to target a single project, but “when you put it into a service provider where they [have] tens of thousands of other organizations’ data, that becomes a lot bigger target, so there’s a lot more risk,” says McCreary.

Researchers developing or collecting data with IoT devices face more diffuse risks, as every device they add to the network is another potential security hole. “When you think about it from an attacker’s perspective, they’re going to go after the weakest links in your system,” says Vyas Sekar, assistant professor of electrical and computer engineering at Carnegie Mellon University in Pittsburgh, Pa.

IoT devices often fit that description. Sekar explains that many networked devices employ shoddy programming practices and receive inconsistent or nonexistent security updates. To combat those problems, he advocates delegating security to professionals in university or corporate technology departments.

While many of the specific legal and security risks of online collaboration and data collection are new, experts in the field agree that the fundamental principles aren’t. “You have security issues that come up, you have privacy issues that come up, but really a lot of the old laws still apply, it’s contract law and it’s intellectual property law, it’s just in a different venue,” says McCreary.

Also read: Imagining the Next 100 Years of Science and Technology

Publishing Evolves in a Connected World

A shot of planet Earth taken from space.

In many ways, the process from paper submission to publication has not changed much in 40 years. However, some changes are underway.

Published May 1, 2019

By Anni Griswold

Douglas Braaten, PhD, Chief Scientific Officer, Scientific Publications Editor-in-Chief, Annals of the New York Academy of Sciences

In the days before artificial intelligence mined obscure gems from the scientific literature; before preprint servers posted study results without pausing for peer review; when social networking meant cocktail conversations at the industry conferences — science publishing looked very different than it does today.

“When I started, authors submitted paper manuscripts produced on a typewriter,” says Douglas Braaten, PhD, chief scientific officer responsible for the Academy’s science journals and books, and editor-in-chief of Annals of The New York Academy of Sciences. “Happily, not everything stays the same.” But as technology continues to reshape academic publishing he says, “it’s useful to think about the things that do.”

In many ways, the process from paper submission to publication has not changed much in 40 years. Researchers still submit papers to journals. Papers are peer reviewed. Journal editors share the reviews with authors. Revisions take place. And then submissions are transformed into carefully copy edited, typeset manuscripts. This system has survived because it works, Braaten says.

But critics have long called for change. Some note that the peer review process can stretch on for months or even years. Others point out that the $25 billion academic publishing industry is dominated by a handful of major players who make a profit from the public investment in research.

Braaten and others don’t deny that the system could be improved. But they say the situation is more nuanced than critics suggest.

“I’d love for the industry to be less concerned with profit-making,” he says. “But there are some fundamentally important and useful things about peer review and having vetted, polished papers published in journals with global footprints.”

Gradually Transforming the Business

Still, technologies aimed at tweaking the process have increasingly flooded the market — and are gradually transforming the business. “It’s hard to keep track of these innovations because there are so many of them out there,” says Steven Ottogalli, Publisher, Life & Physical Sciences at Wiley. “Start-ups are coming online and impacting every part of the publication process, affecting every aspect of the value chain that used to lie solely with the publishers or with the academic societies.”

Preprint servers, for example — long a standard in the math and physics communities — are gaining in popularity with biologists. Scholarly collaboration networks are connecting researchers from diverse fields and distant locations, allowing them to share their findings in real time. Artificial intelligence-based search tools are tipping off scientists to papers they might otherwise overlook — creating new synergies. Novel technologies such as blockchain aim to increase accountability and transparency in the review process by encoding each article with a record of its origins, revisions and peer reviews. And younger generations of investigators are replacing static figures with embedded multimedia and interactive data.

A Sociology Surrounding Scientific Publishing

Collectively, these innovations can bring the world to a laboratory’s doorstep. They can also allow siloed projects to spread in new, unexpected directions. But how will these new technologies fundamentally change the traditional model of scientific publishing?

“There’s such a sociology surrounding scientific publishing,” Braaten says. “Think of what it means for grant funding, and tenure evaluations. And for what it means for the careers of young investigators when they publish in a top-tier journal. One would have a very hard time replacing all of these significant benefits with changes just in technology.”

Yet it’s hard to deny that the field is in transition. “I’ve been in this business for almost 20 years, and things have changed so drastically,” says Ottogalli. “Who knows what it will look like in another decade.”

Variations on a Theme

Steven Ottogalli, Publisher, Life & Physical Sciences, Wiley

Most of the innovations Ottogalli mentions are variations on the theme of open access. This business model shifts the financial outlay from academic institutions to authors and funders (such as the Wellcome Trust). This is done by replacing subscription fees and paywalls with open access license fees and free access to published papers.

Critics complain that subscription-based journals restrict access to publicly funded research by creating subscription paywalls. This, they say, forces the very academic institutions that produce the findings to pay for access to the published work. Open access could potentially fix that by providing immediate public access to papers upon publication.

“But this ‘fix’ doesn’t address the whole story,” Braaten says. “If by open access, you mean access to the information, there are a lot of ways now that one can access all published research, publicly funded or not.”

A Huge Amount of Free, Accessible Information

For example, most journals allow authors to post the submitted version of their manuscript on a lab website or, after peer review and acceptance, on the post-publication websites such as PubMed Central. And with the advent of preprint servers, Braaten says, there’s a huge amount of accessible information for free. “If someone wants access to a paper, it’s often available on one of several sites — just in a different format than one finds in a published journal.”

Subscription paywalls don’t keep science from the people, he says. Rather, they provide publishers and journal owners the funds required to produce published peer reviewed and polished papers on websites in HTML and PDF form, and in print journals. “The typeset published version — not the actual science in the article — is the thing that’s owned by a journal or publisher — it’s the product of their work. I think people may not be aware of this distinction,” he says.

Access to Published Science in a Connected World

One upside to all publishing models — including open access and pre- and post-publication servers — is that published papers are available for such things as AI text mining. In turn, this can improve discoverability within disparate disciplines, for example, ecology and economics. “AI will help humans make connections where they didn’t think of making connections before,” Ottogalli says.

The AI tool IBM Watson, for example, can search published content and find papers on climate change that a researcher might be interested in — and then make connections to other papers that might unexpectedly support work on climate change.

AI will help humans make connections where they didn’t think of making connections before,” Ottogalli says.

In the meantime, researchers are finding ways to share their findings outside of the traditional publishing process.

“Scholarly collaboration networks, which are like Facebook for researchers, are providing greater opportunities for working together,” Ottogalli says. ResearchGate and other scholarly collaboration networks (SCNs) build ties among researchers in similar and disparate fields, and can put relatively obscure labs in developing countries in touch with larger, well-funded ones abroad.

“The international collaboration piece is very important,” Ottogalli says. The publishing landscape is dominated by Western Europe, the U.S. and China, so “sites like this open up doors for researchers who may not be known to researchers in Europe or the U.S. At the end of the day, I think SCNs are a valuable tool in advancing science.”

But There’s a Downside, Too

ResearchGate and other SCNs can be aggressive in encouraging authors to upload versions of their published PDFs in violation of copyright. “This is clearly wrong,” Braaten says. Publishers have routinely issued take-down notices, informing the authors and ResearchGate that they must remove the content because it is in violation of publishers’ policies.

Echoing Braaten, there’s another way to provide access to research findings says Ottogalli: “preprint servers.” In a 2016 policy forum, Science lauded the advantages of preprint servers for authors, journals and funders. These sites expedite publication and offer a forum for sharing new tools or negative results, potentially accelerating the pace of research. It’s also possible that preprint servers could help weed out questionable scientific papers in the pre-peer review phase, when other researchers comment publicly on the study. “Some authors may value the feedback before the paper is submitted to a peer-reviewed journal,” Ottogalli says.

The concept is rising in popularity. Some journals have launched their own preprint servers for papers under review. And a few major federally funded programs require their investigators to post preliminary findings to the servers.

“We’ll see really interesting advancements in the next few years,” says Ottogalli. “It’s a time of big change.”

Big Data: Balancing Privacy and Innovation

Presented by:

Science & the City

Often cited as the “4th Industrial Revolution” big data has the potential to transform health and healthcare by drawing medical conclusions from new and exciting sources such as electronic health records, genomic databases, and even credit card activity. In this podcast you will hear from tech, healthcare, and regulatory experts on potential paths forward that balance privacy and consumer protections while fostering innovations that could benefit everyone in our society. 

This podcast was produced following a conference on this topic held in partnership between the NYU School of Medicine and The New York Academy of Sciences. It was made possible with support from Johnson & Johnson.

Tackling Climate Change One City at a Time

A shot of the New York City skyline.

We caught up with New York City Panel on Climate Change (NPCC) member Michael Oppenheimer to discuss the importance of sound science informing effective policy.

Published February 22, 2019

By Marie Gentile, Mandy Carr, and Richard Birchard

Michael Oppenheimer, PhD

It will take more than a village — even when that “village” is the size of New York City — to find solutions to climate change, but that hasn’t deterred the New York City Panel on Climate Change (NPCC).

Consisting of leading climate change scientists, policy makers, and private sector practitioners the panel consists of leading climate change scientists, policy makers and private sector practitioners. Together, they are identifying and communicating the impacts of climate change. We recently sat down with NPCC member Michael Oppenheimer — head of Princeton University’s Center for Policy Research on Energy and Environment — to discuss the importance of sound science informing effective policy.

Why should NYC take the lead on identifying the impact of climate change?

Not only does NYC have the financial and intellectual capital to address climate change, it has the ability to deploy this capital to find solutions and consider what the looming risks and the options for dealing with these risks are. Its resources, in that way, are greater than any other city on earth.

Secondly, the city has a very high level of risk along its coast, compared to other places around the world. We are subject to both sea level rise and North Atlantic hurricanes and that’s a one, two punch. When it goes bad, you get Hurricane Sandy. So we have to learn to live in an already risk-laden world. If we can figure out how to deal with current risks and sustain the viability of the city through future, growing risks, that will be an important lesson for other places.

What role does the private sector have in helping to shape and implement NYC’s climate change response?

The private sector can be very helpful in terms of gathering the information we need to design potential options. A lot of the progress that’s been made in places like The Netherlands has been made with heavy private sector involvement. The private sector will have to be deeply involved in capital intensive solutions, like a surge barrier or the Big U, not as investors in the projects but because these will have significant implications for businesses. Their support could be a critical factor in the success of such efforts.

Conversely the private sector can create obstacles to progress by being resistant to the financial arrangements that are needed for adaptation and resilience building. NYC’s real estate industry is very politically influential and its preferences have often been quite visible. Sometimes their proposals are smart, and sometimes they are counterproductive and focused on rather narrow interests rather than the welfare of the city. Instead, I hope the industry provides forward-looking engagement that helps the city to protect its people at an affordable cost.

Why is scientific research critical to the development of good policy?

If we don’t have science, we have nothing. We have no evidence to provide a basis for rational decisions, we have no way to know whether it’s wise to retreat from certain areas of the city, or the effects of surge barriers versus more modest control efforts.

We have to understand these things as best we are able decades in advance, in order to implement cost effective solutions. Policymakers cannot make efficient decisions on any particular type of broad scale adaptation project, unless they have at least a vague idea of how fast the sea level may rise. For example, we won’t know whether to begin certain activities now or defer them for 10 years, without science.

If there was ever a problem where you need cutting edge science, climate change is it. The city has been very wise in engaging scientists in understanding what the risk is through the NPCC. That way, the city is in the position to make the best decisions that can be made today, even given significant uncertainty.

How can scientists more effectively communicate with policymakers to implements their findings in effective policy?

Scientists need to be honest with policymakers about what the uncertainties are, what might happen, and what the risks are of taking certain steps (or not taking them). Scientists have to be willing to engage in a two-way conversation, listening carefully to what policymakers need, so that they can better formulate their responses.

In general scientists are not brilliant communicators, but it isn’t necessarily their fault. It’s also difficult to decipher what politicians are willing to hear. Scientists have to talk to political leaders, as if they’re average people, and not in jargon. They need to understand when they approach politicians and policy makers, that in a democracy everyone involved in the decision process, including scientists, are ultimately responsible to the average citizen.

To learn more on this topic, read the full report published in our Annals Special Issue: Advancing Tools and Methods for Flexible Adaption Pathways and Science Policy Integration: NPCC 2019 Report.

To Infinity: The New Age of Space Exploration

A shot of planet Earth taken from space.

The business of space is in fashion again — or at least back in the news. Learn how space exploration today differs from the Sputnik era.

Published October 1, 2018

By Charles Ward

Fifty years ago, 2001: A Space Odyssey thrilled audiences with a vision of space travel, as a Pan Am space shuttle docked and delivered passengers to an international space station, all to the ravishing notes of Josef Strauss’ The Blue Danube.

The station embodied life in space as the futurists of 1968 saw it: all-white physical environs, iconic red Olivier Mourgue lounge chairs, and an international cast of characters devoting themselves equally to science, business and hospitality, while they awaited scheduled departures for other destinations.

The business of space has always been a delicate balancing act, poised between the intense romance of popular imagination and decidedly unglamorous mechanics that it takes to bring vision into reality. The prosaic details include technology, capital outlays, human organization, the marshalling of resources, and legal or policy frameworks.

During the period when Arthur C. Clarke co-wrote 2001: A Space Odyssey with the film’s director Stanley Kubrick, the authors had more than imagination behind them: Peak-year funding for the U.S. Apollo program reached four percent of the American GDP, an extraordinary financial commitment and the tangible tip of a huge mobilization of public enthusiasm.

The Business of Space

Now, the business of space is in fashion again — or at least in the news. In February 2018, the Trump administration announced plans to privatize the International Space Station (ISS) operations beginning in 2025. Three private space companies led by high-profile businessmen — Elon Musk’s SpaceX, Richard Branson’s Virgin Galactic and Jeff Bezos’ Blue Origin — are proclaiming ambitious public goals and even more ambitious timetables.

Derek Webber

Derek Webber, author of The Wright Stuff: The Century of Effort Behind Your Ticket to Space, has been to this rodeo before. In 2010, he was Vice Chair of Judges for the Google Lunar XPRIZE competition, the latest in a line of scientific competitions designed to push the frontier of space travel.

Webber has been a long-time advocate for space tourism, conducting original market research and contributing to the development of regulations via various working groups associated with the regulators such as the FAA’s Office of Commercial Space Travel.

“I was forecasting 2012 as the start date for the sub-orbital space tourism business,” says Webber. “It was particularly exciting in 2004, during the Ansari XPRIZE competition, when commercial sub-orbital space tourism seemed just around the corner, but here we are, some 14 years later, still waiting.”

The re-release of 2001: A Space Odyssey gave Webber the opportunity to compare the vision of 1968 with the realities of 2018. He is well aware of the power of visionary pull — and its practical undercarriage.

“I saw that movie and I loved it. I’m still carrying the torch,” he says.

“But I think in practice things are going to be more nuts and bolts than we saw in ‘2001.’ The reality of things is less exotic,” he added, reflecting on a favorable regulatory environment, ample funding and recurring peaks of interest.

When I look at a television series with a sequence of a space vehicle under repair, with astronauts in pods buzzing around scaffolding,” says Blachman, “I want to know who provided the worker’s comp.”

At the Intersection of Capital and Technology

Amir Blachman

Amir Blachman is well positioned to consider nuts and bolts. As Vice President of Strategic Development at Axiom Space, he leads the financial planning, funding and growth strategy of a company that currently provides astronaut training services and is working towards operation of the world’s first private, international commercial space station when the ISS is decommissioned in 2024. Blachman’s own professional background includes the U.S. Air Force and the investment management industry.

“When I look at a television series with a sequence of a space vehicle under repair, with astronauts in pods buzzing around scaffolding,” says Blachman, “I want to know who provided the worker’s comp.”

Blachman takes the longitudinal view of an evolving industry, marking off key inflection points in an accretive build-up of capital infusions, practices, technologies, processes and infrastructure. One of the most apt historic analogies, Blachman says, comes from Dr. Howard McCurdy’s 2013 research report, The Economics of Innovation: Mountaineering and the American Space Program, which in nearly forensic detail examined the parallel logistical challenges and economic paths of climbing Mount Everest and crewed space flight.

“Climbing Everest and going to space are expensive and have risk,” says Blachman, “and they’re both motivated by science, commerce, national prestige and a personal desire for challenge and exploration. The similarities are uncanny.”

1968 UNISPACE Conference

A Six-Phase Development Model

McCurdy chronicled a ten-fold reduction in the cost of expeditions in the first 90 years of climbing Everest, and parallel falls in mortality rates. Building off his work, Blachman outlines a six-phase development model, in which:

1) Innovation leads to cost reductions;

2) Lower costs encourages entrepreneurs to enter;

3) The promise of profits encourages investors to enter;

4) Profits lead to competition;

5) Competition produces further innovation, cost reduction and scale;

6) Price becomes low enough so ordinary people can afford it.

“In terms of space we are at step three and it will probably be another twenty to thirty years before we get to the point where ordinary people can afford it,” says Blachman. “But it is happening.”

The emerging ecosystem of actors for the business of space, says Blachman, will still include incumbents like governments and their space agencies, as well as traditional “cost-plus” defense and aerospace private contractors such as Boeing.

An additional slice will be made up of an emerging mass of micro-gravity innovators, who are building the companies focused on manufacturing and research in space. Rounding out those segments are “intrapreneurs,” in-house entrepreneurs who are developing the services and technologies used in low Earth orbit, or providers of additive manufacturing sub-platforms.

The Not-So-Hidden Hand

In The Wealth of Nations, Adam Smith coined his “invisible hand of the marketplace” concept as the ultimate guide to economic history. But in space, the highly visible hand of the U.S. government has been and still remains the prime agent for space-related developments.

The government made the massive initial investments in space activity; the ISS alone is reported to have cost $100 billion to build. Some industry observers say NASA’s switch from purely cost-plus contract bidding to fixed-fee bidding, was as significant a financial advance for the industry as SpaceX’s successful reusable launch vehicle was a technological advance.

Peter Martinez

Dr. Peter Martinez is keeping a wary eye on governments and commercial players for their effects on another invisible hand: the treaties and regulations which currently set the rules for all parties. Martinez is the Executive Director of the Secure World Foundation, a private operating foundation that works with governments, industry, international organizations, and civil society to develop and promote ideas and actions to achieve the secure, sustainable, and peaceful uses of outer space. He recently chaired the U.N. Committee on the Peaceful Uses of Outer Space Working Group on the Long-term Sustainability of Outer Space Activities, which was tasked with producing voluntary space sustainability guidelines for States and space actors.

“There are new actors coming into the space arena, people who traditionally don’t have this background,” says Martinez, speaking of the diverse individuals in what some call the New Space movement. “These are people who are personally passionate, like Musk, not content to sit around and wait for national space programs to develop the capabilities to take people to the moon or to Mars or whatever. They’re actually going to go out there and do these things themselves.”

Can Space Resources be Appropriated?

From Martinez’s perspective, the commercialization of space is opening up new questions, including “can space resources be appropriated?” Under the 1967 Outer Space Treaty, the first and most important of the five U.N. treaties that govern space-related law, the moon and asteroids are not subject to the territorial claims of any nation.

Three years ago, however, the U.S. upped the ante, with its “Commercial Space Launch Competitiveness Act of 2015” (“Spurring Private Aerospace and Competitiveness Entrepreneurship Act”), opening the doors for private parties to “engage in the commercial exploration and exploitation of space resources,” excluding biological life. According to Martinez, the Act was careful not to assert U.S. sovereignty over any terrestrial body, but it does allow private entities rights to “extract, own, transfer and sell materials derived from other celestial bodies.”

1967 Outer Space Treaty signing

For now, the legal regime that governs outer space is largely bearing up under the stresses and strains of many new players on the scene, according to Martinez. The Outer Space Treaty, which celebrated its 50th anniversary in October 2017, still provides the international legal foundation for all outer space activities carried out today.

Space Law-Making

Subsequent to the adoption of the Outer Space Treaty in 1967, four other treaties were adopted that address issues such as liability for accidents involving space objects, the registration of space objects, the rescue of astronauts and return of space objects that land on Earth, and the exploration and use of the moon and other celestial bodies. Following this period of space law-making in the 1960s and 1970s, the international community has focused on the implementation of the treaties, supplementing them with additional “soft-law” mechanisms, such as principles and guidelines that address topics such as remote sensing, space debris, and the use of nuclear power sources in outer space.

The field of space law has largely focused on implementation issues arising from the growth of space activities. There are still many open, unaddressed issues, he says, for example the lack of an international agreement on delimitation between airspace and outer space.

“The real danger, of course, is that the reality of development will outpace the ability of regulators to keep up,” he says, outlining scenarios in which commercial entities, looking for the most favorable regulatory environment, could engage in “regulation shopping” and choose to put themselves under the legal auspices of nations with unsophisticated legal systems.

Other legal developments stem from the fact that space is no longer purely the province of science, or even regarded as “somewhere out there,” says Martinez. Citing GPS, he says, “Space is part of the plumbing of everyday life. Most people are unaware of the critical role that space plays in our daily lives. If space were to go down for one day, it would be catastrophic — for stock exchanges, elevators, airports. The glamour is there, but we’re so used to it, we don’t see it anymore.”

The future is always the projection screen on which we throw our plans for today.”

Awareness and Attitudes

While government-sponsored agencies like NASA may be retreating from crewed space activity, government hasn’t entirely abandoned the field. Military imperatives have always played an enormous role in the evolution of the space industry, their public profile whether obvious or not, their under-the-radar initiatives never disappearing entirely. When Vice President Pence announced the formation of the U.S. Space Force, he called it “an idea whose time had come.” The Vice President went on to say, “It is not enough to merely have an American presence. We must have American dominance in space.”

Lucianne Walkowicz

Astronomer Lucianne Walkowicz invites audiences to simply be aware of the underlying attitudes in terms such as “dominance.” Walkowicz, based at the Adler Planetarium in Chicago, straddles the professional worlds of hard science, education, art and philosophy. She’s the author of Fear of a Green Planet: Inclusive Systems of Thought for Human Exploration of Mars, and speaks frequently on the implications of space-related imagination and futurism.

As just one example, she points to magazine illustrations envisioning man in space published in popular American magazines during the 1950s. Those illustrations had outsized impact on the public imagination then, and their influence can still be found in the marketing materials of commercial space companies today. A lot of those images are rooted in the military history of space, notes Walkowicz, with hierarchic organization of missions or crews.

Part of a Larger Ecosystem

“The reason that they are expressed that way visually is that they’re expressions of different philosophies about how human beings should live, not only in space, but here on Earth,” she says. “The future is always the projection screen on which we throw our plans for today.”

Walkowicz does a lot of public communication about the implications of ideas on a day-to-day practical basis. For more specialized audiences, like her astronomy graduate students, she delves into the ethical implications of professional development, and the responsibilities of science and scientists.

Against very real facts such as the discovery of frozen underground bodies of water on Mars, Walkowicz helps peers and generalist audiences alike look differently at grand schemes such as “terraforming” planets like Mars to make them more like Earth and suitable for human colonization.

“If it was possible to do a large-scale global engineering project that transformed Mars into Earth, we wouldn’t have climate change here on Earth,” says Walkowicz.

“Astronomers need to be aware they are part of a larger ecosystem. Technology is not separated from the rest of human endeavor, and it shouldn’t be,” she says. “We can look at our own history and see myriad examples of places where we pushed ahead in areas and did not consider the impact prior to going ahead. That, generally speaking, has turned out badly.”

Out of this World: Staying Safe and Eating Well

A shot of stars and outer space taken from earth.

NASA and research teams around the world are strategizing to meet the needs of astronauts who will embark on deep space explorations beyond the moon.

Published October 1, 2019

By Hallie Kapner

A packet of periwinkle seeds is being prepped for a ride into orbit, tucked into a pouch on a SpaceX rocket bound for the International Space Station (ISS).

The seeds won’t be grown on board — at least not yet. Rather, they’re one part of a broad research effort to probe the ancient botanical pathways that yield some of today’s most widely used medications — including analgesics, antimalarials and powerful chemotherapeutic agents — and to learn what secrets common plants have yet to reveal.

Joseph Chappell

Joseph Chappell, keeper of the periwinkles and chair of the department of pharmaceutical sciences at the University of Kentucky, hatched what he and his collaborators at Space Tango, a Lexington-based startup, admit was a far-fetched plan when they hypothesized that the microgravity environment of space could unlock previously unknown therapeutic pathways in plants.

Much the way that a yearlong stint aboard the ISS altered astronaut Scott Kelly’s patterns of gene expression, Chappell wondered whether the unique stress of microgravity might trigger epigenetic changes in plants that produce medicinal molecules. Uncovering new compounds could be a boon to commercial drug development, but the payoff could be at least a decade and a billion dollars away. Chappell and his collaborators have more immediate goals in mind.

A Source for Food and Medicine

“If we want to support astronauts on Mars missions or other deep space explorations, we have to provide food, fiber and medicine,” Chappell explained, referencing a trifecta of essential needs that NASA and research teams around the world are strategizing to meet as they plan for manned missions beyond the moon.

A round trip to the red planet is chief among their goals, a voyage that would propel one courageous crew farther than humans have ever traveled. A trip to Mars is expected to last at least three years, amid conditions and stresses unimaginable on Earth.

Beyond developing new drugs for terrestrial use, Chappell and his team are studying the potential for stints in space to evoke beneficial epigenetic changes in plants that he claims “offer the whole suite — sources of nutrition, sources of fiber for clothing and other materials, and sources of drugs” — plants that astronaut crews could both grow and utilize on long-term space missions. One plant that piques his interest is hemp, the utilitarian varietal of Cannabis sativa, which has a 10,000-year history as a fiber for rope and fabrics, and a more recent reputation as a source of protein-rich seeds and oil rife with non-intoxicating cannabinoids used to treat maladies ranging from inflammation and insomnia to epileptic seizures.

No Small Feat

The demands placed on the first Mars crew will surpass those of any astronauts in history. Far beyond the traditional roles of pilot, commander, flight engineer or payload specialist, the crew will need to be gardeners, diagnosticians, health care providers and perhaps even settlers, as some projections for a Mars voyage involve the temporary establishment of the first human accommodations on another planet.

Crews will struggle with isolation and confinement, as well as the psychological toll of being separated from family, friends and gravity for years at a stretch. In circumstances where maintaining health, strength and well-being are critical, crews will be reliant on freeze-dried or thermostabilized meals as their primary nutrition source. With no possibility of resupply missions from NASA, a case of menu fatigue will be riskier than ever. Medical care will be millions of miles away, and even a consultation with a flight surgeon will become increasingly impractical as the crew ventures farther into space: a single round trip radio transmission from Mars to Earth takes 40 minutes.

How to keep deep space astronauts healthy, sane, comfortable and collaborative are concerns that require at least as much attention as the technological and engineering developments required to mount a mission to Mars. Balancing the research needs of the mission and the human needs of the crew is no small feat. Accounting for these needs for several years in a profoundly resource-constrained environment requires galactic-scale ingenuity from a team of fiercely optimistic scientists, engineers and entrepreneurs from around the world.

“This is What I Want to Eat”

Periwinkle, the plant from which we get the vinca alkaloids, compounds used to treat a variety of cancers.
Grace Douglas

Chappell’s vision of growing multi-purpose plants in space is far from sci-fi, although zero-gravity farming is still in its infancy. ISS astronauts have already grown several varieties of lettuce and other leafy greens, thanks to an onboard plant growth chamber aptly named Veggie. While some space-grown greens have been eaten in orbit, crews rely heavily on pouched meals meticulously designed by the Space Food Systems group at NASA’s Johnson Space Center.

What space cuisine lacks in presentation it makes up for in ease of preparation and nutrition — in less than 30 minutes, astronauts can reconstitute a meal with (recycled) water, heat it and dine directly from the package. Astronaut fare is created to deliver essential nutrients and calories through meals that may look unusual, but often taste good and, equally important, are familiar and appealing to crews.

Advancing Food Technology

“For a Mars mission, the menu needs to be something that people are content to eat for a long time, and that’s a big challenge,” said Grace Douglas, advanced food technology lead scientist at NASA and leader of a group working to devise a food system for deep space exploration. “If the food isn’t highly acceptable — if crews don’t look at the options and say, ‘this is what I want to eat’ — then they’ll eat enough to get by, but not enough to maintain weight, which can compromise bone and muscle mass and even immune health,” she explained.

In space, as on Earth, food is more than simply fuel, and our associations with what we eat are both emotional and physical. Far from home, we often miss the familiarity of both food and family, craving the meal itself as much as the companionship. Such evocations make Douglas’ job both more difficult and more important. Among all the comforts long-haul astronauts will forego, Douglas believes some comfort from food should remain.

The Perfect Package

Oxygen, temperature, time, moisture: meet the enemies of nutrient-rich food that tastes great for up to five years.

“None of the food we send up now has that kind of shelf-life in terms of stable nutrition and quality,” Douglas said, noting that the stated shelf life for current astronaut food is 18–24 months.

For Mars, five years is the magic number. Weight and space are precious, expensive commodities on a spacecraft, and some food provisions will likely travel in advance of the crew. Those rations need to be safe, appealing, and nutritious from the moment of liftoff until crews consume them on Mars as well as the flight home. This necessitates an ambitious evolution of the space food system and the development of new technologies to sterilize and store meals without compromising appeal, essential nutrients, or adding excess waste or preparation time.

NASA currently packages meals in the same pouches used for military rations, foil-lined sacks that Douglas claims are “the best thing out there” for meeting the strict weight and barrier requirements of space packaging. Yet even the best option can’t touch the five-year mark, as the methods used to sterilize and stabilize meals can jumpstart the processes by which nutrition and quality degrade over time.

New technologies, such as microwave-assisted thermal sterilization, may help extend the life of Mars-bound meals, but will also require the development of a next-generation pouch compatible with such methods. Douglas explained that NASA is also exploring how different environmental conditions — including deep freezing — may be used to preserve nutrients and quality for longer than the current limits.

Ohmic Heating

Meghan Bourassa

Here on Earth, food scientists like Sudhir Sastry, professor of food, agricultural, and biological engineering at Ohio State University, are pioneering techniques for killing pathogenic microbes without compromising nutrition or quality. One such method, ohmic heating, may have some utility for long-haul space travel.

Rather than relying on steam and pressure, ohmic heating uses electrical fields to sterilize or reheat packaged food evenly in seconds, rendering it safe for consumption while retaining many essential nutrients. According to Sastry, about 90 percent of even the most heat labile nutrients, such as vitamin C, remain after sterilization. Dr. Megan Bourassa, a biochemist and an expert in nutrition science at the New York Academy of Sciences, believes finding a way to retain nutrients is crucial. 

“Stability and shelf-life of nutrients are definitely huge issues on Earth, especially in fortified foods,” said Bourassa. “For a five-year journey, food would probably have to be over-fortified to account for degradation over time and loss after cooking.”

Greening the Red Planet

Moviegoers will remember Matt Damon’s character in the film The Martian cleverly repurposing human waste as fertilizer to grow potatoes in a makeshift greenhouse on Mars. Douglas confirms that while Damon’s character didn’t have the resources to build such a robust growing operation, Mars travelers will likely have the ability to grow and consume leafy green vegetables during their voyage.

“As we move further from Earth, we are going to need to have systems of growing food,” Douglas said, although the notion of a Martian-style greenhouse remains quite futuristic.

Research teams have simulated the environmental conditions on Mars to determine how crops might someday be grown there — likely hydroponically — safe from the planet’s freezing temperatures, carbon dioxide-rich atmosphere and high levels of galactic cosmic radiation. University of Kentucky’s Joseph Chappell noted that plants grown in deep space as well as in the Martian atmosphere may undergo gene expression changes or mutations that either boost or degrade the nutritional profile of edible plants — another area of research that must be explored before crews could safely rely on Mars-grown food as a source of calories and nutrients.

“To be reliant on a system like that you’d need a surplus to ensure that if you had a loss of crop, it didn’t mean a loss of crew,” Douglas added.

The Issue of Water

Then there is the issue of water. Despite the recent discovery of what appears to be a 12-mile-wide body of water buried under a mile-thick layer of polar ice, there is no known source of fresh water on Mars. Any liquid water found on the planet is likely to contain toxic levels of perchlorates and other chemicals.

If terraforming Mars is to become a reality, settlers will need a source of fresh water for drinking, preparing food and for agricultural purposes. The carbon dioxide that comprises 95 percent of the Martian atmosphere has been eyed as a feedstock for reactions that could produce a steady supply of water for use on the planet, although technologies capable of performing those reactions at scale have yet to be realized.

The Body Weightless

Two hours a day at the gym would qualify anyone as an exercise nut on Earth, but in space, it’s the norm. Without gravity providing resistance for muscles and bones, both can weaken over time.

Today’s ISS astronauts toggle between several different pieces of exercise equipment, all designed to counter the effects of microgravity and minimize bone loss. Mars-bound crews will have a smaller spacecraft, and a new generation of compact exercise devices is already being developed for deep space flights. Despite their workout regimen, today’s ISS crews universally experience muscle weakness upon returning to Earth.

In his book, Endurance, Scott Kelly described the physical sensation of “all my joints and all my muscles protesting the crushing pressure of gravity” after a full year of weightlessness. Mars astronauts will clock at least three times more time in zero or reduced-gravity than Kelly did, making the return to Earth more difficult and highlighting the importance of maintaining muscle strength and cardiovascular stamina on long missions.

Despite the experiences of more than 250 ISS astronauts and more than 350 shuttle astronauts, there is still much to learn about the specific effects of microgravity on the body and its tissues over long periods of time. To accelerate the process, the U.S. Center for the Advancement of Science in Space has partnered with researchers around the world to send human tissue samples into orbit, growing three-dimensional cultures that allow scientists to study the direct effects of microgravity on various organs.

Changes in Gene Expression

Spaceflight is known to induce changes in gene expression, and may also alter the progression of diseases including cancer and cardiovascular disease. Insights derived from organoids in microgravity today may lead to protective mechanisms for tomorrow’s astronauts, and could yield new therapeutics for use on Earth.

Similar research using cell cultures tests the impact of yet another deep space concern on the human body: galactic cosmic radiation. Earth is constantly bombarded by solar radiation and cosmic radiation from within the Milky Way, yet everything on the planet is doubly shielded — first by a geomagnetic field that deflects dangerous rays and particles, then by Earth’s thick atmosphere.

Those who venture beyond the bubble lose these protections. Mitigating the risks of radiation damage is a major challenge for Mars mission planners.

Researchers at the NASA Space Radiation Laboratory at Brookhaven National Laboratory are simulating cosmic radiation by blasting biological samples with ions that mimic the rays Mars travelers will encounter in space. Plans both practical and seemingly outlandish abound for combating space radiation, from a protective vest currently used to protect soldiers and first responders from radiation threats, to an artificial magnetic shield that would restore Mars’ own magnetosphere, lost to solar wind erosion billions of years ago. Solving the radiation problem will require a combination of advances in materials science, physical shielding measures for craft and crew, and potentially even pharmaceuticals that could reduce gene mutations resulting from radiation exposure or accelerate the restoration of radiation depleted cell populations.

It’s Lonely Out in Space

Rocket Man, Elton John’s 1972 anthem of the homesick space traveler, presciently articulated the concerns of many researchers working to realize the dream of a trip beyond our planet.

Humans have long braved extreme isolation and remote environments in the name of discovery, but never without gravity, fresh air, sunrise and sunset. Add loneliness, confinement, boredom, separation from loved ones and a healthy mix of fear and anticipation, and the potential for psychological difficulties among deep space astronauts ranks highly.

Mike Massimino

Nobody has spent more consecutive days in space than Russian cosmonaut Valery Polyakov, who logged a remarkable 438 days on the Mir space station in the 1990s. A Mars mission will last far longer.

In order to better understand the limits of loneliness and the triggers of distress, and to identify factors that promote resilience in tough conditions, teams of researchers in Hawaii, Moscow and Antarctica have studied groups of fellow scientists living in conditions similar to those of a future Mars mission. Complete with field work analogous to the tasks astronauts would need to complete on Mars, time-delayed communication with mission control, pre-packaged and freeze-dried foods, close quarters, and irregular sleep and wake cycles, these simulations have provided valuable insights into human behavior and helped hone in on personality traits that may be desirable in a Mars crew.

‘Til Touchdown Brings Me ‘Round Again

Identifying activities and amenities that boost astronaut morale are also high priorities. Among the wellness-enhancing pursuits that may be reasonably accessible on a Mars mission, tending to green plants ranks high, as does exercise. Virtual reality technologies are also being tested as a method to reconnect astronauts to the sights and sounds of Earth — be it waves crashing on a beach, the green grass of the countryside, or birds soaring over the glass-like surface of a lake.

After completing a series of missions that serve as critical stepping stones to deep space flight, NASA plans to launch a manned mission to Mars in the 2030s. The scientific community’s tireless efforts to realize the day when a human will set foot on Mars throws into stark relief the intricate, perfectly-tuned biological machinery that allows us to thrive effortlessly here, on our blue planet.

As we prepare to travel farther than ever before, it is impossible not to appreciate how well-suited we are to life at home. Upon his final voyage to repair the Hubble Space Telescope in 2009, shuttle astronaut Mike Massimino, awed at the beauty of the Earth, said it best.

“This is what heaven must look like,” he said. “I think of our planet as a paradise. We are very lucky to be here.”