Skip to main content

The Last Strand

Winner of the Junior Academy Challenge – Fall 2024 “Upcycling & Waste Management”

Published May 16, 2025

By Nicole Pope
Academy Education Contributor

Sponsored by Royal Swedish Academy of Engineering Sciences (IVA)

Team members: Vedeesh B. (Team Lead) (India), Livia G. (Sweden), Muhammad Q. (New Jersey, United States), Syed R. (Florida, United States)

Mentor: Christine Yu (Hong Kong)

Our world’s growing waste problem is largely driven by the production and disposal of short-lived products, creating a “use-and-dispose” culture. The mass manufacturing of new products consumes significant resources such as raw materials, water, and energy while generating greenhouse gasses, chemical emissions, and other pollutants. Even when products are recycled, the costs remain high due to the energy and processes needed for collection, sorting, and recycling. As a Fall 2024 Innovation Challenge, students were tasked with designing a solution to reduce waste generation by encouraging long-term product use and taking into account product design, business model, and societal behaviors.

Two Overlooked Sources of Pollution

This international team of high-school students collaborated online to address two sources of waste and pollution that are often overlooked: human hair and chicken feathers. Through their research, the Junior Academy challenge participants discovered that every year, hair salons and barbershops worldwide discard 300,000 tons of human hair while the poultry industry generates four billion kilograms of feathers. When discarded in landfills, hair releases methane, a gas 25 times more potent than carbon dioxide, while incineration of these waste products directly contributes to greenhouse gas emissions and increases CO2 levels. Yet both these materials are rich in keratin and offer largely untapped resources.

The students’ solution, The Last Strand, focuses on the considerable potential for upcycling hair and feathers by turning the rich biological elements they contain into high-quality, bio-derived amino acids supplements. “With our mentor Christine’s help, I developed better research techniques and uncovered valuable studies, allowing me to contribute more effectively to the project,” says team lead Vedeesh, who says he also honed his leadership skills in the course of this challenge.“ This process also deepened my understanding of genetic modification and the structure of human hair, concepts that were entirely new to me before this experience.”

The Growing Demand for Dietary Supplements

The team initiative responds to the growing demand for dietary supplements, particularly Branched-Chain Amino Acids (BCCAs), which are beneficial not only for athletes but also people who suffer from a decreased immune system, digestive problems, and various other health issues. In addition, it supports a circular economy that simultaneously reduces waste and turns discarded materials into a valuable resource.“At the core of this whole project lies the extraction of keratinases from hair, which combines, in beautiful ways, the precision of science with the principles of sustainability, and weaves together a powerful story of innovation and resourcefulness,” says team member Muhammad. “Hair is not a life byproduct, but a strong and intricate structure fully packed with keratin, one of those proteins which have great industrial and biological applications.”

The students outlined a process that first involves the collection of protein-rich hair and feathers from hair salons and poultry farms, and cleaning them to remove oils, dirt, and other contaminants. The next steps entail the use of sodium sulfide and enzymatic hydrolysis to break down the keratin and convert it into amino acids. Advanced filtration techniques are then employed to purify and separate essential amino acids like leucine, isoleucine, and valine before drying them. The method identified by the students proved cost-effective, potentially reducing the production cost of amino acid supplements by 50% and setup costs by up to 90% compared to existing systems, while the resulting products could be sold between $25 and $75 per kilogram, therefore offering a competitive alternative to current production systems. In addition, the team members also found that their process generates valuable byproducts, such as lipids, which could also be sold to industries like soap manufacturing. This could further offset costs and enhance the project’s sustainability. 

A Transformative Approach to a Global Waste Problem

“During this challenge and through our research I didn’t only learn about the technicalities of turning discarded hair into supplements, I also learned a lot about production costs, formulating a budget, and more,” says Livia. “I was also positively surprised by the receptiveness of the stakeholders in Florida. My fantastic teammate, Syed, was able to reach out to almost 15 hair salons in his local Florida and their impact was incredibly valuable to our project.” In addition, Syed reached out to 15 poultry farms in his state, who responded positively to the students’ project and declared their willingness to contribute to such an effort. Through these stakeholders, the project could collect approximately 30 tons of keratin waste monthly from local areas.

“From the initial brainstorming sessions to collaborating with teammates and our mentor, every step was a unique learning experience. I contributed by leveraging my background in (gene technology) CRISPR and gene editing to understand and refine the chemical and enzymatic processes for amino acid extraction,” says teammate Syed. “Engaging with stakeholders in Florida gave me a deeper appreciation for how science can drive real-world change. Most importantly, I’m proud of how we came together as a team to create something impactful, combining our strengths to address a critical global issue.”

The team members believe their solution could be fully implemented within five years. They are proud to have developed a project that promotes scientific innovation and sustainability. Their solution offers a transformative approach to a global waste problem that also contributes to human health and economic resilience.

Learn more about the Junior Academy.

Upgrading the Hydraulic System

Winner of the Junior Academy Challenge – Fall 2024 “Remediation in South Brooklyn”

Published May 16, 2025

By Nicole Pope
Academy Education Contributor

Sponsored by The New York Academy of Sciences and Empire Wind 1

Team members: Cameron A. (Team Lead) (New York, United States), Ohee S. (New York, United States), Cindy W. (New York, United States), Ankea C. (New York, United States), Ayten A. (New York, United States), Annika C. (New York, United States)

Mentor: Xiwei Huang (New York, United States)

As part of its climate strategy to reach a fully renewable electricity grid by 2040, New York City is turning to offshore wind energy. However, the development of offshore wind structures present environmental and community challenges, including construction noise, air pollution, and marine disruption. As a Fall 2024 Innovation Challenge, the Junior Academy offered its New York City based students the opportunity to tackle these problems by designing solutions to remediate the impacts of offshore wind development, focusing on land and water preparation.

This team, composed of six high school students from New York, won the Junior Academy challenge on Remediation in South Brooklyn with a project to upgrade the hydraulic systems in the South Brooklyn port area. The students considered that, as the South Brooklyn Marine Terminal undergoes reconstruction, effective stormwater management will be crucial to manage stormwater and prevent flooding, block debris and pollutants from reaching the water, and protect the surrounding environment.

Current Issues that Impact South Brooklyn’s Water Systems

Team members had lengthy discussions while selecting the problem they wanted to tackle and developing their solution. “Respect and inclusivity were a big part of our success. We found that discussing our differences and voting on decisions helped keep things fair and balanced,” explains Ayten, one of the team members. “This project also changed the way I approach challenges. It taught me to think like an engineer focusing on finding solutions instead of getting discouraged by obstacles.” The team explored the hypothesis that integrating a scaled-up version of advanced filtration technologies into the existing sewer infrastructure would significantly enhance the hydraulic system’s effectiveness.

“Through my research I have learned more about hydraulic systems and the current issues that impact South Brooklyn’s water systems. Hydraulic separators are a type of stormwater management system used to ensure fresh water enters bodies of water without pollutants, similar to the function of water filters,” explains teammate Cindy. “Brooklyn’s hydraulic systems are in need of an upgrade to ensure that the port can have a fully functional vessel transportation system. For this the waters must be clear of debris.”

Designing a Filtration System

Their project focused on designing a filtration system prototype on CAD Fusion 360 (Computer-Aided Design) and then using Computational Fluid Dynamics (CFD) to test the prototype. “This project has strengthened my belief in teamwork and the importance of improving New York City’s old infrastructure,” explains team member Ankea. “One of my favorite aspects of this project was the opportunity to improve my CAD skills. I already had basic knowledge of CAD software like Onshape and Fusion but this project allowed me to learn more about CAD, especially computational fluid dynamics, from my peers and I was able to apply these new skills to my personal projects.”

The students developed a dual hydraulic separator system, consisting of two connected units, to address the specific filtration challenges posed by the unpredictable weather conditions typical of New York City. The primary separator operates under normal conditions and provides basic filtration, while the secondary separator is larger and designed to handle heavy runoff water during storm events. A sensor-controlled gate between the two detects water flow and automatically opens when high pressure is detected. In emergencies, the gate can also be operated manually.

The team equipped the two separators with advanced filtration systems to remove sediments, oil, debris and other pollutants before they enter the water. When they tested their solution, the team discovered that a filtration system with multiple small holes was more efficient than one with a single large hole. Not only was it able to filter out more debris but it also allowed for a faster flow of water, which is crucial during extreme weather events. Their aim was also to improve efficiency and reduce the need for frequent system maintenance, therefore optimizing performance while also cutting costs.

Breaking Down Complex Problems

“One significant takeaway from this experience is that solving complicated problems requires dissecting them into more manageable, connected tasks,” explains Bronx-resident Ohee. “Even though we focused on hydraulic system optimization, our work was part of a larger plan to restore the port as a hub for trade and transit. A solution that strikes a balance between environmental and human interests was shaped in large part by important variables including marine habitats, the demands of the local people, and the system’s sustainability.”

During the intense period they spent working together, the team members acquired new skills and a better understanding of teamwork. They also developed a new perspective on urban challenges. Among the major insights team member Annika gained through this challenge was “the broader implications of water treatment systems like hydraulic separators. These technologies extend beyond simply cleaning water—they prevent chemical runoff, safeguard marine ecosystems, and contribute to sustainable urban development,” she said. “Addressing New York City’s history of environmental challenges with innovative solutions is vital for both the city’s residents and its ecological future.”

Team lead Cameron felt that collaborating with the other participants on this challenge would help him in the future. “Working with my team over the last few months has allowed me to look at things from a new, more creative angle,” he said. “Being able to work on this project has been such a unique experience. I feel better prepared for when I start doing real research.”

Learn more about the Junior Academy.

Living in the Extremes

Overview

Our world is constantly changing; with the rise of severe natural disasters mainly due to climate change and our growing world population, we must explore ways to live in more extreme environments. What are these extremes and how can humans live there? How might we face the challenges of excessive heat, rising sea levels, or increased erosion due to torrential rain? What will it take to explore new avenues of living in space, living on different celestial bodies aside from our home planet, living in the deep sea, or in the middle of a desert? In this challenge, you will focus on one “extreme environment” and propose a comprehensive solution to sustain life there. Your team will be asked to consider how to reduce the effects of the “extreme environment” and must also consider society, ethics, and further impacts from your solution on earth.

Challenge

Design a comprehensive solution for living and thriving in a specific extreme environment.

Consider the following when designing your solution:

  • What could be considered an extreme environment?
    • What are the causes of these extreme environments?
  • What are the environmental challenges and risks of the extreme environment you have chosen?
  • How would your shelter, home, living environment address the issues that the extreme environment poses?
    • Would your solution help address issues related to climate change? World population growth? Food deserts? Etc.
  • How can you integrate Community Co-Design into your solution?

See the challenge course syllabus.

Success Evaluation Criteria

Solutions will be judged based on the following criteria:

  • Innovation and Design Thinking: Is the design and approach unique and/or innovative? Does the design show a high degree of originality and imagination?
  • Scientific Quality: Are the appropriate references and analytical methods used and are the insights derived correctly?
  • Presentation Quality: Is this concept concisely and clearly explained? Are the findings/recommendations communicated clearly and persuasively?
  • Commercial Viability/Potential: Does the solution have the potential to make a difference?
  • Sustainability: What is the social impact on local communities? How does the solution incorporate positive environmental or social objectives? Is the solution in line with a sustainable or justice focused future?
  • Teamwork and collaboration: Was the experience a collaborative endeavor? Was the knowledge gained from the experience reflected upon and tied back to a civic engagement mindset? (From Personal Reflections)

See the challenge rubric.

Winners

The winning team, Living in Extreme Heat (TAIU), had an innovative approach in designing a shelter or living system for living and thriving in a specific extreme environment. 

Team members: 

  • Katelyn G. (Team Lead) (California, United States)
  • Rishab S. (India)
  • Adham M. (Egypt)
  • Youssef I. (Egypt)
  • Shravika S. (Virginia, United States)
  • Mentor: Anavi Jain (Tennessee, United States)

Sponsor

Air Quality & Health

Overview

Air quality has been a known health issue to people and cultures around the world for hundreds of years. Around 400 BC Hippocrates made the connection between disease and “miasma” (bad air). In 1952, the “Great Smog of London” reached peak pollution levels and precipitated the deaths of between 10,000 and 12,000 people as well as negative health outcomes for an estimated 100,000 people. Today air pollution is believed to account for 7 million deaths annually, most of which are the result of non-communicable diseases (NCDs), including heart disease, lung disease, and cancer. In this challenge you will design a technical solution to address a key source of pollution in order to make a positive impact on NCDs. How could you take a scientific and design thinking approach to contribute to a sustainable and equitable shift in this ongoing environmental and health challenge? 

Challenge

Identify or target a specific source of pollution and design a technical solution that would reduce or eliminate air pollutants while also reducing the impacts of one or more non-communicable diseases.

Consider the following when designing your solution:

  • What pollution source will you address?
    • Fossil fuel combustion? Which fossil fuel? 
    • Wildfires? 
    • Industry (Food, Agriculture, Fashion? 
    • Something else?
  • What air pollutants will your solution minimize? Smog? Ozone? Carbon dioxide? Soot? Ammonia? Something else? 
  • How will you approach the problem? Will you take a community approach or an industry approach? What industry or industries will you tackle?  
  • How can your solution address equity issues in air quality and/or public health?
    • How might you integrate community co-design into your solution?
    • How might your solution be scaled to impact other regions or other countries? 
  • How can you keep the cost of your solution low enough to encourage implementation?
  • How sustainable is your solution? 
  • What region or community might your solution impact the most?
  • What public policy might be needed to support or implement your solution?

See the challenge course syllabus.

Success Evaluation Criteria

Solutions will be judged based on the following criteria:

  • Innovation and Design Thinking: Is the design and approach unique and/or innovative? Does the design show a high degree of originality and imagination?
  • Scientific Quality: Are the appropriate references and analytical methods used and are the insights derived correctly?
  • Presentation Quality: Is this concept concisely and clearly explained? Are the findings/recommendations communicated clearly and persuasively?
  • Commercial Viability/Potential: Does the solution have the potential to make a difference?
  • Sustainability: What is the social impact on local communities? How does the solution incorporate positive environmental or social objectives? Is the solution in line with a sustainable or justice focused future?
  • Teamwork and collaboration: Was the experience a collaborative endeavor? Was the knowledge gained from the experience reflected upon and tied back to a civic engagement mindset? (From Personal Reflections)

See the challenge rubric.

Winners

The winning team, Eco-twisters, had an innovative approach in creating a sustainable, eco-friendly air filter that is both cheap and effective.

Team members: 

  • Kelsey M. (Team Lead) (California, United States) 
  • Hana H. (Egypt) 
  • Zoha H. (North Carolina, United States) 
  • Islam H. (Saudi Arabia) 
  • Sanaya M. (New Jersey, United States) 
  • Kavish S. (North Carolina, United States)
  • Mentor: Brisa Torres (Germany)

Sponsors

The Junior Academy is implemented by The New York Academy of Sciences and is supported by the J. Christopher Stevens Virtual Exchange Initiative (JCSVEI). JCSVEI is a U.S. Department of State’s Bureau of Educational and Cultural Affairs program administered by the Aspen Institute.

A Case for Going to Bat for the Bats

Bats play a vital role in ecosystems. But new research shows that if action isn’t taken, the future of these essential winged mammals in North America may be in jeopardy.

Published October 31, 2024

By Nick Fetty
Digital Content Manager

A Big Brown Bat (Eptesicus fuscus) flying over water in Arizona. This species’ conservation status is classified as “least concern” according to the International Union for Conservation of Nature. Image courtesy of Dennis Donohue – via stock.adobe.com.

More than half of North American bat species may face extinction in the next two decades, according to researchers from Canada, Mexico, and the United States.

Recent research, published 15 October 2024 in Annals of the New York Academy of Sciences (Annals) built upon findings from a 2023 report by the North American Bat Conservation Alliance. For the Annals paper, researchers assessed the status of 153 bat species. The paper identified several factors threatening these bats, ranging from climate change and energy production to agriculture and problematic species, particularly disease.

The Impact of These Threats

Bats are vital to ecosystems. They serve as pollinators and insect consumers, both of which help to advance agricultural production. Furthermore, sustainable guano harvesting and tourism around viewing bat behaviors, support some local economies.

Temperature fluctuations, exacerbated by climate change, are impacting hibernation behavior and foraging opportunities for bats. They also detrimentally impact the timing of insect availability—a source of subsistence for many bat species. Additionally, extreme weather events have contributed to bat die-offs.

While renewable energy can lessen the amount of carbon in the atmosphere, and mitigate the impact of climate change, gigantic wind turbines are proving to have harmful effects on bats. This is especially problematic in migratory regions where wind energy development has grown in recent years. According to the paper, turbines are responsible for hundreds of thousands of bat fatalities each year in North America.

While owls, hawks, and snakes are natural predators of bats, disease poses the greatest threat. White-nose syndrome (WNS), caused by the invasive fungus Pseudogymnoascus destructans (Pd), has been devastating for bat populations. First discovered in New York in 2007, WNS affects bats during hibernation and causes a “visible white fungal growth on infected bats’ muzzles and wings.”

Populations of the little brown bat (Myotis lucifugus), the Indiana bat (Myotis sodalis), and the northern long-eared bat (Myotis spetentronalis) have declined by more than 90% because of these contagious fungi. Arthuro Casadevall, MD, PhD, author of What if Fungi Win?, discussed this during his Authors at the Academy event in July (Dr. Casadevall was not among the authors of the Annals paper). He told attendees that “The losses in North American bats cannot be replaced very easily. It will probably take centuries.”

Mitigating the Threats

The international team of researchers for the Annals paper found that 53% of North American bat species are estimated to have moderate to very high risk of extinction or elimination in the next 15 years. An estimated 90% of species will see decreased or likely decreased populations during the same period. The researchers identified 18 bat species (12%) as “Imperiled” or “Critically Imperiled”.

While the threats to bat populations are increasingly clear, the paper’s authors provide various suggestions for how these issues can be mitigated. Governments in Canada, Mexico, and the United States have implemented federal protection status for the most vulnerable bat populations. Eight of the species identified as Imperiled or Critically Imperiled have protective status in all three countries.

Similarly, governments, and other sectors, can take action to mitigate the impacts of climate change, which, again, has been identified as one of the biggest threats against bats. By protecting, restoring, and creating wetlands and other water sources, it can lessen the biggest climate change threats facing bats. Adopting sustainable agricultural practices, such as utilizing native trees for shading, not only protects the bats, but can also help to conserve the productivity of the land.

To mitigate the threats caused by wind turbines, turbine operations can be curtailed at night during migratory periods. Further study of WNS can provide researchers with evidence to support the need for meaningful policy action. By lessening the knowledge gap in other applicable areas like ecology, distribution, and migratory behaviors, researchers can promptly act to mitigate some of the biggest threats facing bats.

Call to Action

Urgent action is necessary to ensure these threats don’t proliferate further decline in bat populations, according to the researchers. This includes better educating the public about the importance of bats to the overall environment and why people need to support legislation that can protect these creatures.  When the pace of the research can’t keep up with the direness of the threat, governments can act in the form of federal endangered species declarations as a last line of defense. If properly executed, these actions can “yield far-reaching benefits for both biodiversity and humanity.”

“Research on bat biology can spark innovative ideas for effective conservation actions that reduce population decline, and these actions can bring complementary benefits to habitats that other taxa (species) also rely on,” the authors concluded. “With coordinated efforts to reduce threats, raise public awareness, protect and restore habitat, and monitor species status and trends, conservation efforts can improve the outlook for bat species across North America and globally.”

Do you have a research paper you’d like to submit for publication in Annals of the New York Academy of Sciences? Learn more about the journal’s criteria and submission process.

Upcycling and Waste Management

Sculpture made of glass bottles

Overview

Imagine you are going to the store and you make some purchases. How much of that purchase will end up in a landfill? Did that product contain recyclable packaging? Now think about all of the waste you produce, food waste, product waste, textile waste… It can be overwhelming to think about. Do you know how much waste you produce in one day, one month, one year? Is it more or less than what you were expecting? How can you reduce that consumption and encourage others to consume less?

In this challenge, you will be designing a comprehensive solution to waste management at a scale that makes a measurable impact. It’s not only us as individuals who waste and contribute to unmanageable waste sites but large companies and corporations too. In this challenge we will explore how we can make small and large changes that lead us all to a more mindful and resourceful future.

Challenge

Design a solution to reduce waste generation by encouraging long-term product use and shifting away from the “use-and-dispose” culture.

You will design an end-to-end/overall solution that takes into account product design, business model, and societal behavioral and mindset reset needed to make changes possible.

Your solution should focus on one specific product category, such as electronics, clothing, food containers, household items, and more.

When designing your solution, think about the following:

  • Durable Product Design: How can products be made more durable and repairable to ensure long-term use?
  • Behavioral Change: What educational or incentive-based approaches could encourage people to adopt waste prevention habits?
  • Sharing Economy: Could a platform be created to facilitate product sharing, renting, or second-hand exchanges within a community?
  • Repair and Maintenance: How can repair services be made more accessible and affordable to extend product life?
  • Data Tracking: How can technology monitor product usage and encourage responsible disposal only when necessary?
  • Business Model: How can sustainable practices be integrated into profitable business models that encourage long-term product use and reduce waste?

Whenever possible, consider whether your product can be upcycled and have a second life.

See the challenge course syllabus.

Success Evaluation Criteria

Solutions will be judged based on the following criteria:

  • Innovation and Design Thinking: Is the design and approach unique and/or innovative? Does the design show a high degree of originality and imagination?
  • Scientific Quality: Are the appropriate references and analytical methods used and are the insights derived correctly?
  • Presentation Quality: Is this concept concisely and clearly explained? Are the findings/recommendations communicated clearly and persuasively?
  • Commercial Viability/Potential: Does the solution have the potential to make a difference?
  • Sustainability: What is the social impact on local communities? How does the solution incorporate positive environmental or social objectives? Is the solution in line with a sustainable or justice focused future?
  • Teamwork and collaboration: Was the experience a collaborative endeavor? Was the knowledge gained from the experience reflected upon and tied back to a civic engagement mindset? (From Personal Reflections)

See the challenge rubric.

Winners

The winning team, The Last Strand – Upcycling, had a creative and innovative approach of designing a solution to reduce waste generation by encouraging long-term product use and shifting away from the “use-and-dispose” culture.

Team members:

  • Vedeesh B. (Team Lead) (India)
  • Livia G. (Sweden)
  • Muhammad Q. (New Jersey, United States)
  • Syed R. (Florida, United States)

Mentor: Christine Yu (Hong Kong)

Sponsor

Remediation in South Brooklyn

Overview

Offshore wind has the potential to reimagine the cityscape of New York City. With increased summer temperatures and the heavy reliance on an overworked cooling system, New York City will be the new home to a wind farm right in our backyard. The South Brooklyn Marine Terminal will be the new hub for Empire Wind 1 and Equinor’s wind farm. In this challenge you are asked to design solutions that remediate the building of offshore wind renewable energy infrastructure in New York City through the lens of STEM and the community, focusing on land and water preparation.

Challenge

At the South Brooklyn Marine Terminal in Sunset Park, there are areas on land and in the water that call for immediate remediation to prepare for the new offshore Empire Wind complex.

Focus on one of the following areas and design a comprehensive solution for remediation:

  • Preparation for building on land
    • Noise/traffic/actual construction/air monitoring
    • Current buildings from 1970s
    • Regrade hydraulics separator for run-off stormwater
  • Preparation in the water

Integrate the following into your solution:

  • Social justice 
    • A concept that asserts every person should have the same rights and opportunities, and that wealth and resources should benefit everyone – is not always integrated into remediation, making already disadvantaged communities even more vulnerable to negative impacts of climate change.
    • Think about how social justice can be included in your solution, looking at racial, urban, identity, accessibility, and/or environmental justice.
  • Community co-design
    • The shared mapping of a problem, identifying shared priorities, and designing, implementing and evaluating a potential solution together with those most affected by the issue (in this Challenge, residents of Sunset Park).
  • New or adapted technologies (AI, AR/VR, nanotechnology, materials, robotics),
  • Processes, steps (such as detecting seafloor anomalies/seafloor mapping, underwater sea vehicles) that are preliminary to your solution.

Innovative solutions may be completely new ideas or solutions that have worked in other regions but are adapted for New York’s unique needs and people. Solutions need to be tested to ensure they are effective for community needs as offshore wind infrastructure is built up in the near future.

See the challenge course syllabus.

Success Evaluation Criteria

Solutions will be judged based on the following criteria:

  • Innovation and Design Thinking: Is the design and approach unique and/or innovative? Does the design show a high degree of originality and imagination?
  • Scientific Quality: Are the appropriate references and analytical methods used and are the insights derived correctly?
  • Presentation Quality: Is this concept concisely and clearly explained? Are the findings/recommendations communicated clearly and persuasively?
  • Commercial Viability/Potential: Does the solution have the potential to make a difference?
  • Sustainability: What is the social impact on local communities? How does the solution incorporate positive environmental or social objectives? Is the solution in line with a sustainable or justice focused future?
  • Teamwork and collaboration: Was the experience a collaborative endeavor? Was the knowledge gained from the experience reflected upon and tied back to a civic engagement mindset? (From Personal Reflections)

See the challenge rubric.

Winners

The winning team, Remediation in South Brooklyn: Upgrading the Hydraulic System, had an innovative approach of finding ways to remediate the areas on land and in the water to prepare for the new offshore Empire Wind complex.

Team members:

  • Cameron A. (Team Lead) (New York, United States)
  • Ohee S. (New York, United States)
  • Cindy W. (New York, United States)
  • Ankea C. (New York, United States)
  • Ayten A. (New York, United States)
  • Annika C. (New York, United States)

Mentor: Xiwei Huang (New York, United States)

Sponsor

Our Iceland Adventure Turned into a Climate Crisis Wake-Up Call

A shot of icebergs in Iceland.

The Jökulsárlón glacier lagoon provides not only aesthetic beauty but it’s a case study in the detrimental effects of climate change and the need to take mitigative action now.

Published September 11, 2024

By Syra Madad, D.H.Sc., M.Sc., MCP, CHEP
Public Health Editor-at-Large

Photo by Syra Madad.

On a recent trip to Iceland with my children, we visited the Jökulsárlón glacier lagoon, a place known for its serene beauty, where fractured icebergs from the Breiðamerkurjökull glacier drift across the water. Their ethereal shades of blue and black felt timeless, but in reality, they represent the fragility of an ecosystem being reshaped by climate change.

While sailing through the lagoon, we witnessed massive icebergs drifting across the water, their glistening surfaces reflecting the light in stunning shades of blue. During the excursion, we watched as one of the staff members aboard the boat scooped up a piece of ice from the lagoon—once part of a melted glacier—and took a bite.

For most of the group, this was a fun and quirky highlight of the trip. But as an infectious disease epidemiologist, my thoughts immediately turned to the potential microbes preserved in that ancient ice—microbes that could have been dormant for millennia. Research shows that as glaciers and permafrost thaw due to climate change, long-dormant microorganisms, including potential pathogens, can be released.

Glacial ice can harbor viable infectious pathogens, as evidenced by a recent study which found that over 50% of bacterial cells on glacier surfaces are capable of resuming activity within 24 hours after thawing, highlighting their ability to remain dormant and potentially pathogenic in frozen environments, only to become active under the right conditions.

Public Health and Melting Ice Caps

This experience left me thinking not just about climate change in the abstract, but also about the potential public health consequences of melting ice caps. The possibility of ancient microbes resurfacing is a stark reminder that climate change affects more than just the physical environment—it also has implications for causing future outbreaks. 

Jökulsárlón, which didn’t exist before the 20th century, is a direct result of rising global temperatures. This glacial lagoon only began to form around 1935, driven by the rapid retreat of the Breiðamerkurjökull glacier, a process that has accelerated with every passing decade. The lagoon’s surface area has doubled since the 1970s, and it now stands as Iceland’s deepest lake, growing as the ice that once shielded this region melts into history.

Photo by Syra Madad.

The expansion of Jökulsárlón is a living testament to the impact of a warming planet, visible and visceral. This lagoon’s growth is not a triumph of nature’s beauty but a stark reminder of the irreversible transformations happening in our environment.

Every meter of receding glacier signifies the loss of critical ice reserves that have sustained ecosystems for centuries. Iceland’s glaciers are losing significant ice mass each year. For example, a study on Iceland’s glaciers revealed a loss of approximately 9.6 gigatons of ice annually as observed from 1995 to 2019, with half of the total mass loss occurring during this period, reflecting an accelerated rate due to climate change.

The Urgency of Action

As I stood at the lagoon’s edge with my children, I couldn’t help but wonder what kind of world they will inherit. Will these glaciers become distant memories? As a mother, the climate crisis is deeply personal. The wildfires, floods, and extreme heat waves we see across the world are not exceptions but increasingly the new normal, driven by a warming planet.

In Jökulsárlón, the visible melting glaciers underline the urgency of action. Climate change is no longer an abstract concept; it is unfolding right before our eyes. As we approach Climate Week NYC, it is a reminder that the time for action is now. The retreating glaciers of Iceland tell us a story of loss, but they also challenge us to decide what kind of future we will create for the generations to come.

Will we act, or let this pivotal moment pass, forever changing the world our children will inherit?


Stay connected with Dr. Madad:

Instagram
Twitter/X
LinkedIn
Facebook

More from Dr. Madad on the Academy Blog

Dr. Madad’s Critical Health Voices on Substack

Students Make Sustainable Fashion Statement

Sustainable textiles hanged up on a tree outside.

Winners of the Junior Academy Innovation Challenge Spring 2024: “Circular Textiles”

Published August 14, 2024

By Nicole Pope
Academy Education Contributor

Sponsored by Royal Swedish Academy of Engineering Sciences (IVA)

Team members: Rachita J. (India) (Team Lead), Mariia H. (Ukraine), Sofía R. (Colombia), Alex B. (United States), Sylvia X. (United States), Altynay N. (Kazakhstan)

Textiles and fashion are important sectors for the world economy but as demand increases, so do the environmental and human costs – due to harmful production processes that degrade natural resources and the mountains of textile items that are discarded every year.

Estimates suggest that 87% of global textile waste ends up in landfills or incinerators. These environmental impacts apply not only to the clothes we wear in our daily life, but also to the textiles used in the medicine, agriculture, and manufacturing sectors.

For the Junior Academy Innovation Challenge “Circular Textiles”, this international team of students came up with new suggestions to improve environmental standards in textiles, each member sharing their own insights to the design of their solution. “Throughout the project, everyone contributed their unique ideas and leveraged their specialized skills to advance our goals,” explains Sylvia. “The synergy within the team was palpable, fostering an environment of creativity and productivity.”

Collaborating online through the Academy’s Launchpad platform, the students divided the tasks across the group to develop their comprehensive plan. “I did some research and produced tables that consisted of the information about the project,” says Mariia. “I also contacted some experts and I was working on Lean Canvas.” The team found that technical textiles – engineered and manufactured with specific functions in mind – was a rapidly growing sector that reached US$213 billion in 2023, a 5.6% increase in the previous year.

Replacing Non-Sustainable Synthetics

The group focused on finding a sustainable replacement for fossil fuel-based synthetic yarns, nature-based materials like Rayon (viscose) that are linked to deforestation, as well as fibers like cotton that require water-intensive cultivation. They landed on Biofabrics as a potential solution. The students proposed addressing the three main drawbacks of Biofabric clothing – the expensive cost, the susceptibility to microbes, and the poor resistance to repeated washing – to create a more affordable, longer lasting product.

Their solution was using agricultural waste to optimize the production of a synthetic cellulose fiber called Lyocell and relying on deep eutectic solvents (DES) as an alternative to the more expensive chemicals traditionally used in cellulose extraction to reduce the cost. Another ground-breaking innovation involves the application of silver nanostructures to the Lyocell fibers, which would confer both greater durability and antibacterial properties to the fabric, and last more than 20 washes.

To tackle the pollution caused by fabric coloration, the team members suggested employing Direct Laser Interference Patterning (DLIP), a cutting-edge technique that uses laser beams to create nano-texture surfaces with precise interference patterns to impart vibrant colors without the need of toxic dyes.

Throughout the competition, the team’s schedule was intense. Finding time to meet across time zones was not always easy. “There were some challenges during the entire duration of the project, the biggest being the time difference,” says Team Lead Rachita. “I however tried to manage this by dividing the team further into teams and distributing tasks after getting approved by the entire team.” Team member Alex, for his part, created a spreadsheet to keep track of availability. “This helped us schedule meetings with as many people able to attend as possible,” he says.

Striving for Sustainable Textile Production

The students realized that, in addition to using technology to make textile production less damaging to the ecosystem, promoting circularity and sustainability in the sector also required raising awareness of environmental impacts among consumers, particularly in low and middle-income groups, which account for an estimated 90 percent of the global population.

They developed “EcoFashion,” an app designed to educate users of all ages and engage with them, which includes age-specific games aimed at toddlers and teenagers, challenges to motivate adults, as well as mini courses and interactive modules that deliver a wealth of information and leverage psychology to change consumer behavior.

For nine weeks, the team members worked long hours to develop their innovative approach and outline their findings in a polished presentation. “With the abundance of information and the high quality of research done by each team member, condensing it into a concise presentation was daunting,” says Sofia. “To overcome this hurdle, we collectively decided to put in extra hours, working diligently to summarize our findings effectively while ensuring the essence of our work remained intact.”

Their success, and the skills they acquired along the way while developing friendships across borders, made it all worth it. “The experience was great as it was the first time I did such a thing,” says Altynay. “I think such experience will help me in the future in researching other things, and in communicating with different people.”

Read about the other winner from the Spring 2024 Junior Academy Innovation Challenge:

Using Artificial Intelligence and Augmented Reality to Assist Dementia Patients

Alternatives To Mineral Space Mining

A shot of Lithium from the periodic table of elements.

Winners of the Junior Academy Innovation Challenge – Fall 2023 “Minerals of Technology”

Published August 14, 2024

By Nicole Pope
Academy Education Contributor

Sponsored by Royal Swedish Academy of Engineering Sciences (IVA)

Team members: Sriyash T. (Team Lead) (India), Radoslav K. (United States), Aarish K. (United States), Rehan S. (India), Aashritha T. (United States), Farhan M. (United States)

For the “Minerals of Technology” Junior Academy Innovation Challenge, high school students were asked to come up with an innovative approach to secure the supply of the critical minerals needed to support the transition to a fossil fuel-free society.

Critical minerals are used in the manufacture of cell phones, photovoltaic solar plants, electric vehicles and numerous other modern appliances. As a growing number of countries move away from fossil fuels to combat climate change and limit the global temperature rise to 1.5°, ensuring a sufficient supply of these critical minerals has become a global concern. The supply will need to increase six-fold by 2040 to support the shift to a more climate-friendly, fossil fuel-free world. Crucially, these rare minerals are not renewable, and must therefore be used efficiently and sustainably.

For their winning project, the MINnovator’s team members from the United States and India sought a solution to this issue in space. They proposed developing a fleet of autonomous asteroid mining drones, powered by hydrogen and solar energy. The drones would extract and process the resources they collected in space. The students’ plan would reduce the carbon emissions associated with conventional mining methods and mitigate the risk of mineral shortages on Earth.

Intrigued, Yet Skeptical

“Initially intrigued, yet skeptical about the idea of harvesting resources from asteroids for a cleaner alternative, I’ve witnessed the evolution of this concept into a tangible project,” says Aarish. “Our space droid, fueled by solar and hydrogen energy and employing 3D printing technology, promises to revolutionize resource acquisition. The droid’s ability to gather rare metals, silicon, oxygen, and water presents a promising solution to the scarcity of these vital resources on Earth.”

According to their ambitious solution, the drones would include a retractable drill to harvest materials through precision scraping or strip mining of resource-dense veins, as well as 3D printers and robotic assemblers to process them in situ. Only finished products would need to be transported back to Earth, in bulk shipments, to maximize cost efficiency and minimize environmental impact. Thanks to a modular design, the drones could be adapted and configured for optimal use during specific aspects of the mining cycle.

“One of my primary roles within the group was the creation of 3D models that visualized the intricate details of our proposed asteroid mining operations,” explains Farhan. “This involved a steep learning curve, but the opportunity to immerse myself in the technical aspects of space mining was both exciting and rewarding. The models not only enhanced our presentations but also provided a tangible visual aid that helped the team grasp the complexity of the project.”

Opening New Horizons

The topic of this Junior Academy challenge opened up new horizons for the team members. “Working with this team on the mineral conservation project through asteroid mining was an illuminating journey,” explains Aasritha. “Working with a diverse team has been a profound and enriching experience, one that has stretched my perspectives and broadened my understanding of collaboration in many ways I never anticipated.”

“It was both inspiring and incredibly satisfying to think that our study would open the door for asteroid mining to provide sustainable mineral conservation,” says Rehan. “The problem we faced was extremely complex and offered many difficulties, one of which was coordinating communication across time zones.”

Tackling a global issue that could shape the future of their generation, gave the participants a great sense of achievement. “This initiative underscores the potential of youth to wield significant influence, irrespective of age or background,” says Team Lead Sriyash. “I want to express profound gratitude to my exceptional teammates. The formation of MINnovators was driven by the intent to unite diverse individuals who share a common fervor for leveraging science to transform the world.”

His teammate Radoslav, echoes Sriyash’s sentiment: “Even when this challenge is over, I trust every one of us to go out into the world and continue to make the world a better place, one project at a time.”

Read about other winners from the Fall 2023 Junior Academy Innovation Challenge: