Skip to main content

Regulated Degradation of RNA and Proteins: The Dr. Paul Janssen Award Symposium

Lynne Maquat, PhD, of the University of Rochester and Alexander Varshavsky, PhD, of the California Institute of Technology have been awarded the prestigious 2024 Dr. Paul Jannsen Award for their fundamental discoveries in the regulated degradation of RNAs and proteins.

Dr. Maquat’s research has unveiled how cells selectively destroy flawed messenger RNA molecules to prevent the production of abnormal proteins. Dr. Varshavsky’s work uncovered key aspects of the ubiquitin system, including the first degradation signals (degrons) in short-lived proteins. Together, their collective discoveries have profoundly advanced our understanding of cellular mechanisms, opening avenues for new treatments for many human diseases such as cystic fibrosis, cancer, neurodegeneration, and disorders of immunity.

This hybrid symposium celebrates their pioneering work. Symposium registration is complimentary. However, pre-registration is required for both in-person and virtual participation.

Sponsors

Presented By

Cancer Metabolism and Signaling in the Tumor Microenvironment

Join leading experts at the forefront of cancer metabolism research for a one-day event on April 8, 2025, in New York City. The New York Academy of Sciences invites you to “Cancer Metabolism and Signaling in the Tumor Microenvironment” where top basic, translational, and clinical scientists will explore the intersection between cell signaling and metabolism.

Modern research in cancer metabolism and signaling has uncovered complex metabolite-signaling networks in cancer. These networks support tumor progression by enabling cell growth, influencing stress responses, restructuring the tumor microenvironment, aiding immune evasion, and promoting metastasis. Many of these oncogenic metabolic changes are enriched in tumors. These insights offer promising new therapeutic targets for combating cancer.

Join us for the latest in our series of annual symposia on new developments in cancer metabolism research. This event provides a collaborative platform to exchange knowledge on how tumor cells exploit cellular signaling and metabolic pathways to support malignant growth.

Don’t miss this opportunity to connect with leaders in the field and stay at the cutting edge of oncology innovation.

Sponsors

Presented By

The New York Academy of Sciences
Cancer & Signaling Discussion Group

Sponsored By

Lead Supporter: Cancer & Signaling Discussion Group

Vaccines and Therapies for Chronic Viral Diseases

Join leading experts at the forefront of virology, vaccine research, and epidemiology for a two-day event in New York City on May 21-22, 2025. The New York Academy of Sciences invites you to “Vaccines and Therapies for Chronic Viral Diseases,” where top basic and translational scientists, clinical investigators, and regulators will explore how the most current research on chronic viral infections can be leveraged for transformative pharmacologic advances to battle chronic viruses and virus-associated diseases.

Chronic viral infections pose a significant threat to global health, encompassing viruses linked to serious diseases like human immunodeficiency virus (HIV), hepatitis C virus (HCV), and various herpes viruses. With over 290 million people globally infected with chronic hepatitis B virus (HBV) and approximately 1.2 million who die annually from acquired immune deficiency syndrome (AIDS), new research into vaccines and therapies is essential.

Participate in this exciting conference to explore recent progress and remaining obstacles for transformative therapeutics for chronic viral diseases. This is a unique opportunity to engage with renowned experts, uncover groundbreaking studies, and discuss innovative therapeutic strategies. Don’t miss out on this chance to be part of the conversation.

Sponsors

Presented By

The New York Academy of Sciences
Microbiology and Infectious Diseases Discussion Group

Sponsored By

Lead Supporter: Microbiology and Infectious Diseases Discussion Group

Assisting Dementia Patients with AI and AR

A photo of a man checking his smartwatch, with AI graphics over-imposed.

Winners of the Junior Academy Innovation Challenge Spring 2024: “Wearables”

Published August 14, 2024

By Nicole Pope

Sponsored by The New York Academy of Sciences

Team members: Riya K. (India) (Team Lead), Shreeniket B. (United States), Sysha R. (India), Prakul P. (India), Tisha S. (India), Medha T. (United States)

Dementia is a neurodegenerative condition that affects 55 million people worldwide and 1 in 10 people older than 65 in the United States, according to the World Health Organization. Alzheimer’s disease is the best-known form of this debilitating condition, which leads to memory loss and confusion. It gradually erodes individuals’ ability to perform simple functions or even recognize familiar faces.

The impact of dementia is not limited to the individuals affected by the condition. Caregivers, who are often family members, bear the burden of providing support, often at great personal cost.

Harnessing the power of wearable technology, the members of this enterprising team composed of high-schoolers from the U.S. and India, devised the VisionXcelerate glasses – an innovative device designed to provide personalized assistance to dementia patients and help them perform every-day tasks independently, thus lightening the burden of carers. Some of the sensors are contained in an eyeglass chain that also ensures users do not lose the device. The students reached out to patients, hospitals and nursing homes to identify specific needs.

“After contacting 90 dementia patients in total, I gained new research and critical thinking abilities. I was able to identify their needs by observing them and analyzing their responses,” explains Sysha, who also learned about coding while working on the image/facial recognition for the glasses. “I have gained more empathy for others by trying to find a solution for people suffering from Alzheimer’s.”

“Wonder Glasses”

The VisionXcelerate smart glasses and their numerous features, including collecting user health data, are the result of an intense group effort, with each team member contributing different skills and strengths. “Being the Team Lead for this project, I’ve witnessed firsthand how collaboration, hard work, new ideas, and obstacles have shaped our journey,” explains Team Lead Riya. “Each member of our team has contributed significantly, from ideation to prototyping. It’s been inspiring to see everyone’s passion and commitment to the project.”

The students used both Artificial Intelligence (AI) and Augmented Reality (AR) to develop the various functions of their “wonder glasses”, which provide real-time assistance, and help dementia patients overcome some of the challenges posed by memory loss and help wearers identify objects and faces. “I was mainly involved in the research and design aspects of the project, particularly surrounding the technologies we wanted to implement in our design and their practicality/viability,” explains Shreeniket, whose approach was partly shaped by observing elderly family members.

For example, the device includes a virtual personal assistant that prompts users to take medication at specific times and to eat or drink at regular intervals, in a voice that mimics the patients’ loved ones. This helps to foster trust and build emotional connection.

VirtualXcelerate also features an app that allows caregivers to monitor the patients and their activities from afar. “The experience of working with teammates sitting in different corners of the world has helped me gain new insights and think about solutions from a completely new perspective,” explains Tisha.

A Rewarding Journey

Working across time zones was not always smooth sailing. “There were a few hiccups. But at the end of the day, everything came together beautifully,” says Prakul. “Despite the obstacles, the journey was rewarding. It pushed me out of my comfort zone, taught me valuable skills in teamwork, problem-solving, and project management, and allowed me to contribute to a meaningful cause.”

This experience gave team members a new understanding of dementia and how it affects patients and those around them. “I learned about the difficulty dementia patients face on a daily basis, and how our solution was impactful to them,” says Medha. “During this process, I helped contribute to researching certain features on the glasses, such as the reminders. Additionally, I sketched out each feature on the glasses, in a variety of angles to demonstrate the importance of location. Overall, this experience was an outstanding opportunity for me.”

As dementia sufferers are prone to falling, the glasses have detection systems to alert caregivers in case of a mishap while GPS tracking and geofencing allows them to locate patients who have wandered beyond a safe area and are too confused to find their way home. These security features not only contribute to dementia patients’ well-being, but also provide carers and relatives peace of mind.

With user feedback, the team plans to continue to refine their solution and add more elements that will further enhance the quality of life of people living with dementia, help them retain their independence longer, and ease the pressure on caregivers.

Read about the other winner from the Spring 2024 Junior Academy Innovation Challenge:

Developing Circular Textile Practices Through Recyclable Fabrics and Reducing Color Dye Pollution

The Rising Threat of Mosquito & Tick-Borne Illnesses

A closeup of a mosquito sucking blood from a human.

Mosquitos and ticks thrive during the summer months, which is when they also present their greatest threat to public health. Dr. Syra Madad, Chief Biopreparedness Officer with NYC Health + Hospitals, offers advice on how to protect yourself, your family, and your pets from these disease-carrying insects.

Published August 8, 2024

By Syra Madad, D.H.Sc., M.Sc., MCP, CHEP

The mosquito (Culex pipiens) drinks blood on human skin. Image courtesy of ihorhvozdetskiy – stock.adobe.com.

The rise in mosquito-borne and tick-borne illnesses is a pressing public health concern. In recent years, there has been a significant increase in these illnesses globally, including in the United States. Both mosquito and tick-borne diseases thrive in the summer months due to warmer temperatures and increased humidity, which create ideal breeding conditions for mosquitoes and enhanced tick activity.

The increase in diseases such as dengue, West Nile virus, and Lyme disease underscores the urgent need for effective prevention and public awareness. By adopting the ABCDE approach and taking practical preventive measures, we can combat the spread of these diseases and protect our health.

The Growing Burden of Mosquito-Borne Diseases

Dengue is a mosquito-borne viral infection that has reached unprecedented levels in the Americas, with over 9.7 million cases reported in the first half of 2024 alone, a significant rise from previous years. Symptoms of dengue include high fever, severe headache, pain behind the eyes, joint and muscle pain, rash, and mild bleeding. The CDC has issued a health advisory highlighting the increased risk of dengue in the United States, particularly in Puerto Rico and among travelers returning from endemic areas. Majority of dengue virus cases are asymptomatic, with about one in four people infected with dengue getting sick.

West Nile virus, another mosquito-borne disease, has also been detected early and extensively. For example, in New York City, there were 325 positive mosquito pools reported as of mid-2024. There’s been 103 human diseases cases including 68 neuroinvasive disease cases of West Nile virus across 26 states in 2024 so far. An estimated 70-80% of human West Nile virus infections are subclinical or asymptomatic.

Symptoms of West Nile virus infection can range from mild, flu-like symptoms to severe neurological illness. Less than 1% of infected individuals develop West Nile Neuroinvasive Disease (WNND), which typically presents as meningitis, encephalitis, or acute flaccid paralysis. People over 60 years of age, or those with certain medical conditions or undergoing treatments that cause immunosuppression—such as diabetes, hypertension, cancer, or organ transplantation—are at greater risk of developing WNND.

A blacklegged/deer tick (Ixodes scapularis).
Image by Centers for Disease Control and Prevention via Fairfax County/Flickr. Licensed via CC BY-ND 2.0. No changes were made to the original work.

Tick-Borne Diseases on the Rise

Ticks are responsible for transmitting various diseases, with Lyme disease being the most prevalent in the United States. The blacklegged tick, which carries Lyme disease, anaplasmosis, and babesiosis, has expanded its range due to climate change, leading to increased cases even in urban areas like Staten Island and the Bronx. Symptoms of Lyme disease include fever, headache, fatigue, and a characteristic skin rash called erythema migrans. If left untreated, the infection can spread to the joints, heart, and nervous system. The warming climate has extended the tick season, allowing these vectors to remain active for longer periods and spread more widely.

ABCDE Approach to Mosquito and Tick-borne Disease Prevention:

To protect yourself against mosquito and tick-borne diseases, utilize the ABCDE approach:

Ticks are often found in tall grasses. Image courtesy of Yuriy T – stock.adobe.com.
  • Avoid: Avoid areas with high mosquito and tick activity, especially during peak seasons. This includes wooded, brushy, and grassy areas where ticks are common, and areas with stagnant water where mosquitoes breed. Mosquitoes that carry West Nile virus usually bite around dusk and dawn.
  • Block: Use Environmental Protection Agency-approved insect repellents on exposed skin and clothing. DEET, picaridin, and oil of lemon eucalyptus are effective options.
  • Control: Use air conditioning and window screens to prevent mosquito entry. Regularly empty containers that collect water to reduce mosquito breeding sites.
  • Dress: When outdoors, especially in wooded or grassy areas, wear long sleeves, long pants, and socks. Light-colored clothing makes it easier to spot ticks.
  • Examine: After spending time outdoors, perform thorough tick checks on yourself, children, and pets. Promptly remove any attached ticks with fine-tipped tweezers.

Stay connected with Dr. Madad:

Instagram
Twitter/X
LinkedIn
Facebook

More from Dr. Madad on the Academy Blog

Dr. Madad’s Critical Health Voices on Substack

Cancer Metabolism and Signaling in the Tumor Microenvironment

A man presents during a research symposium.

From metabolic reprogramming in cancer cells to creating nucleotide imbalances. These experts are advancing the field of medical research and cancer treatment.

Published August 6, 2024

By Megan Prescott, PhD

What causes a normal cell to become a cancer cell? How do cancer cells cooperate to form a tumor?  How can we interrupt these processes to inhibit cancer growth? Can nutrients directly modulate disease progression and therapeutic response?

These and related questions were the focus of a conference held on April 17, 2024. The conference was presented by The New York Academy of Sciences and NYU Langone Health. The program held at the NYU Medical Center, included presentations by world renowned researchers in the field of cancer metabolism. The goal was to understand how these findings can be translated into therapies that will impact the lives of patients.

Metabolic pathways represent a powerful, yet underappreciated set of therapeutic targets for cancer. They play a crucial role in tumorigenesis, the transformation of normal cells into cancerous ones. Oncogenic mutations may alter these metabolic pathways, enabling cells to extract energy from their surroundings. Additionally, they manipulate signaling pathways to drive tumor development and advancement.

Mitochondrial Adaptations and Signaling in Tumors

Navdeep Chandel, PhD.
Photo by Nick Fetty/The New York Academy of Sciences

Opening speaker, Navdeep Chandel, PhD, David W. Cugell, MD Professor at Northwestern University, described how metabolic reprogramming in cancer cells is directly triggered by oncogenes. Some of the metabolic genes important for oncogenesis include those found in the electron transport chain (ETC) of mitochondria.

Since mitochondria are a biosynthetic and bioenergetic hub inside of cells, many types of cancer cells, which proliferate quickly and have high energy demands, rely heavily on mitochondria for their survival. Electron transport chain function is responsible for providing metabolites linked to the tricarboxylic acid cycle (TCA). This provides the building blocks for cell proliferation. Dr. Chandel has shown that the widely used anti-diabetic drug metformin has anti-tumor effects through inhibition of Mitochondrial Complex I of the ETC within cancer cells.

Immune-dependent attenuation of tumor growth was seen in work from Pere Puigserver, PhD. Dr. Puigserver is a professor of cell biology at Harvard Medical School and the Dana-Farber Cancer Institute. Mitochondrial Complex I inhibition in tumors triggered by deletion of the subunit Ndufs4, increases the activation status of CD8+ T Cells and Natural Killer cells within the tumor environment. This finding has potential implications in the field of immunotherapy.

Oxygen, Iron, and Vitamins in the Tumor Microenvironment

Electron Transfer Reactions in the mitochondria are facilitated by iron-sulfur containing proteins. Isha Jain, PhD, assistant professor in biochemistry and biophysics in the School of Medicine at the University of California, San Francisco, showed how these proteins are damaged in high oxygen (hyperoxic) conditions. While researchers have studied the detrimental effects of low oxygen on the body for a long time, Dr. Jain’s work focuses on discovering why too much oxygen is toxic in some cases.

“We found that certain proteins that contain iron, basically rust in high oxygen, and that’s why things go wrong,” she explained. Her work opens the question of whether treatments that can be developed to protect or repair these proteins.

Richard Possemato, PhD
Photo by Nick Fetty/The New York Academy of Sciences

Research from Richard Possemato, PhD, associate professor in pathology at the NYU Grossman School of Medicine, showed that iron-sulfur clusters are important for tumor growth in breast cancer. DNA Polymerase Epsilon (POLE) contains an iron-sulfur cluster, and inhibition of POLE by disrupting its iron-sulfur cluster eradicates tumors in a mouse model of triple negative breast cancer. Furthermore, tumor eradication by this method induces adaptive immunity, and researchers were unable to grow tumors in these mice again.

Recent work has emphasized that the stressful conditions of the tumor microenvironment. Parts of the tumor periodically experience limited availability of primary nutrients and oxygen. This also affects the metabolism of cancer cells. Cell proliferation, the hallmark of cancer, is metabolically demanding. It requires energy and cellular ‘building blocks’ in the form of amino acids for proteins, fatty acids for lipids, and nucleotides for DNA and RNA.

How Cells Rewire Their Metabolism

Gerta Hoxhaj, PhD, assistant professor in the Children’s Medical Center Research Institute at the University of Texas Southwestern Medical Center, described how cells rewire their metabolism to fuel the growth and survival of cancer cells. Cells need a constant supply of nucleotides to grow, proliferate, and function.

Cells can either get their supply of purine nucleotides from simple molecules like amino acids by de novo synthesis or can recover purines from the breakdown of DNA and RNA through the salvage pathway. While de novo synthesis and salvage pathways contribute similarly to purine pools in tumors, the salvage pathway is critical for tumor growth in mouse models of liver cancer, among others.

Research from Celeste Simon, PhD, the Arthur H. Rubenstein, MBBCh Professor at the University of Pennsylvania, demonstrates that metabolic crosstalk is also important in Pancreatic Ductal Adenocarcinoma (PDAC), the second leading cause of cancer related death in 2023. Fibroblasts help PDAC cells survive by supplying these tumor cells with unsaturated fatty acids for the maintenance of lipid homeostasis in low oxygen (hypoxic) and nutrient-poor environments. Finding drugs to disrupt this cross-talk could be a novel metabolic target in PDAC treatment.

Cancer Cell Intrinsic and Extrinsic Determinants of Tumor Metabolism

The tumor microenvironment of PDAC has abundant fibroblasts of different lineages and functions according to Mara Sherman, PhD, head of the Mara Sherman lab at Memorial Sloan Kettering Cancer Center. “We identified one lineage that promotes pancreatic cancer metastasis and seems to do so along nerves,” she said.

Lydia Finley, PhD, Geoffrey Beene Junior Faculty Chair, Memorial Sloan Kettering Cancer Center; Dafna Bar-Sagi, PhD, Executive Vice President and Vice Dean for Science, Chief Scientific Officer, NYU Langone Health; Melanie Brickman Borchard, PhD, Director of Life Sciences Conferences for the Academy; Alec Kimmelman, MD, PhD, Director, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health; Megan Prescott, PhD, Program Manager of Life Sciences for the Academy; Costas Lyssiotis, PhD, Maisel Research Professor of Oncology, University of Michigan; and Steven Gross, PhD, Professor of Pharmacology, Weill Cornell Medical College.

Social interactions between cancer cells, such as competition and cooperation, is an interest of Carlos Carmona-Fontaine, PhD, associate professor of biology at NYU. “The key currency for this cell-cell interaction is nutrients and other metabolites including oxygen,” he noted. Specifically, his presentation asked how amino acids become cooperative goods in low oxygen environments.

Amino acid starved cells cooperate to digest extracellular peptides: Both low, and high density, populations die without glutamine, but high-density populations recover when it is added back. The essential enzyme in this process is CNDP2. Inhibition of this form of cooperation impaired tumor growth.

The Impact of Blocking Adenosine Uptake in T-cells

Matthew Vander Heiden, PhD, Lester Wolfe Professor of Molecular Biology at MIT and director of the Koch Institute for Integrative Cancer Research, found that the nucleotide precursor adenosine suppresses anti-cancer immune responses. He presented work that showed blocking adenosine uptake in T-cells rescues proliferation and partially rescues cytokine production in these cells through salvaging pyrimidine nucleotides. Environmental conditions promoting nucleotide imbalance in T cells can regulate immune response, showing that if you can create nucleotide imbalances, then you can change cell fate.

This conference provided insight into metabolic changes, genes and pathways that support tumor growth and proliferation, and how this knowledge can inform new treatments that disrupt the strategies cancer cells depend on to survive.

Course: Mental Health First Aid

A graphic for Mental Health First Aid training offered by the National Council for Mental Wellbeing.

November 12, 2024 | 12:00 PM – 5:00 PM ET

115 Broadway, 8th Floor, New York, NY 10006

Did you know that one in five adults in the United States is experiencing a mental health challenge? Almost half of all adults living in the United States will experience a mental health challenge at some point in their lifetime. This makes it more critical than ever for individuals to receive training to help build skills that will help them identify, understand, and respond to signs of mental health issues in adults. Mental Health First Aid (MHFA) is an interactive full-day training program designed to help individuals identify, understand, and respond to signs of mental health issues and substance use disorders in adults.

Similar to First Aid and CPR training, MHFA is a key set of skills that can allow STEM students, educators, and professionals to assist their students, peers, and colleagues who may be experiencing an acute mental health issue. Join The New York Academy of Sciences for a full-day in-person interactive MHFA training customized for people in the STEM field.

Learn how to:

  • Recognize common signs and symptoms of mental health and substance use challenges.
  • Interact with a person in crisis and connect them with help
  • Prioritize self-care and care for their mental health.

MHFA is an internationally recognized program that originated in Australia and taught in more than 25 countries worldwide.

The program follows evidence-based fidelity standards. In addition to a physical manual, each participant will receive an online certificate valid for three years upon course completion, which can be added to their LinkedIn profile.

Please note that two hours of preparatory work are required. Participants will receive a link to this material shortly after registering for the course.

Space is limited. Register to secure your spot today!

Pricing

Member: $30.00

Nonmember: $55.00

HPAI A(H5N1) Transmission Among Cattle in the U.S.

Brown cows graze on a pasture.

While the risk to the public remains low, the highly pathogenic avian influenza (HPAI) A(H5N1) is on the radar of those in sectors like livestock breeding, animal sciences and food production.

Published May 28, 2024

By Syra Madad, D.H.Sc., M.Sc., MCP, CHEP; Jason Kindrachuk, PhD; and Rick A. Bright, PhD

Image courtesy of Nazzu via stock.adobe.com.

Recent observations on highly pathogenic avian influenza (HPAI) A(H5N1) have highlighted the virus’s transmission among dairy cattle in the United States. Key findings include ongoing detection and transmission of H5N1 among cattle, a second human case of H5N1 infection in a farmworker; mixed virus receptor distribution in mammary gland tissue of cattle, genetic evolution of H5N1 with onward transmission, evaluation of pasteurization effectiveness for virus inactivation, and a clinical description of HPAI H5N1 influenza A virus infection in a U.S. dairy farm worker.

Genomic and Epidemiologic Insights

In May 2024, investigators at the U.S. Department of Agriculture (USDA) reported genomic and epidemiologic data showing HPAI A(H5N1) spillover to, and transmission among, cattle. While prior data on Influenza A virus in cattle is scarce, the current geographic expansion of HPAI H5N1 among herds across multiple U.S. states demonstrates clade 2.3.4.4b’s affinity for cattle.

Reduced food intake, milk production, and shifting milk quality was first noted in January 2024, followed by detection of influenza A virus, specifically H5N1 clade 2.3.4.4b genotype B3.13, by the National Animal Health Laboratory Network and National Veterinary Services Laboratories. Subsequent analysis suggested movement of genotype B3.13 between dairy cattle farms and domestic poultry.

The study’s authors suggested a single spillover event from wild birds with limited cattle-to-cattle transmission around December 2023. Additional spillovers were identified from infected cattle to poultry and other nearby mammals, with the virus potentially shedding from infected cattle for 14-21 days. Genome sequencing indicated ongoing evolution, possibly linked to mammalian adaptation.

Viral Receptor Distribution

Sialic acid receptors utilized by influenza A viruses for cellular attachment, are found in multiple cattle tissues, including the respiratory tract, mammary glands, and brain. Though all type of sialic acid receptors could be found in each of these areas, the types and concentration of sialic acid receptors varied by tissue; those used by human and duck viruses were more prominent in the mammary gland and to a lesser degree in the respiratory tract, while those used by chicken viruses were more prominent in the respiratory tract and to a lesser degree in the mammary glands.

These findings provide insights into HPAI A(H5N1)’s tissue tropism in cattle and its transmission patterns. The presence of multiple types of species-specific receptors for influenza A viruses located throughout the dairy cattle also permits hypotheses on potential for them to serve as a mixing vessel for accelerated reassortment of influenza viruses, increasing a potential for the evolution of an influenza A virus with human pandemic potential.

 Pasteurization and Food Safety

On May 1, 2024, the U.S. Food and Drug Administration confirmed that pasteurization inactivates H5N1 virus in a variety of milk products. No infectious H5N1 virus was found in nearly 300 retail dairy samples that were positive for viral nucleic acid by quantitative PCR. Additionally, neither viral nucleic acid nor infectious virus was found in retail powdered infant formula and powdered milk. This supports pasteurization’s effectiveness in inactivating concentrations of H5N1 virus found in the milk supply among samples collected in April. Advisories against consuming raw/unpasteurized milk or milk products remain in place.

Clinical Case in a Dairy Farm Worker

A recent study reported on the first reported human case of H5N1 infection in a U.S. dairy farm worker who experienced ocular discomfort without respiratory symptoms or fever.  The worker had close contact with symptomatic dairy cows from farms with confirmed H5N1 infections. Personal protective equipment included gloves but no ocular protection. Swab specimens from the conjunctiva and nasopharynx confirmed H5N1 through RT-PCR and viral genome sequencing. Home isolation and oral oseltamivir were recommended, leading to resolution of conjunctivitis.

No secondary infections were reported among household contacts. Importantly, viral sequences showed no mutations suggesting changes in receptor binding or antiviral susceptibility. However, a mutation in the internal PB2 gene showed a change that is more commonly associated with human adaptation and warrants close monitoring.

Implications and Recommendations

These reports underscore the need for comprehensive HPAI A(H5N1) surveillance in agricultural settings. While cattle infections have been reported by the USDA to be generally transient with mild symptoms, the potential impact on milk production and food security is significant. The risk of ongoing viral evolution and broad transmission among cattle could lead to further mammalian adaptation. Although human infections from cattle seem to be rare at this time, the burden of infection necessitates detailed assessments of human spillovers, especially in areas with current or prior outbreaks. This includes serology to establish spillover rates to humans and monitor for changes in spillover frequency.

While the general public’s risk remains low, those at higher risk include individuals with routine or frequent contact with potentially infected birds, livestock, other animals or contaminated animal products and environments (e.g., farmers, livestock workers, animal handlers, employees of milk and meat processing facilities, milk or carcass transport drivers, and veterinarians).

Human infections with H5N1 can occur when the virus enters the eyes, nose, or mouth, or is inhaled. This can happen through airborne droplets, small aerosol particles, or dust that settles on mucous membranes. Infection can also occur if a person touches a contaminated surface and then touches their mouth, eyes, or nose. Exposed individuals should monitor for symptoms within 10 days, including fever (100°F [37.8°C] or higher), chills, cough, sore throat, difficulty breathing/shortness of breath, eye tearing, redness, or irritation, headaches, runny or stuffy nose, muscle aches, and diarrhea.

About the Co-Authors

Jason Kindrachuk, PhD is an Associate Professor, Canada Research Chair, Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.

Rick A. Bright, PhD is CEO, Bright Global Health and Former Deputy Assistant Secretary for Preparedness and Response, U.S. Department of Health and Human Services.

Read more from Dr. Madad on the Academy blog:

Public Health Peril: The Fungus Among Us

A panel discussion from the South by Southwest event.

Think fungal infections are just annoying skin irritations like athlete’s foot and jock itch? Think again. The rise of antifungal resistance means the game has changed. What was once a surefire treatment is now uncertain, and severe, life-threatening fungal diseases are on the rise.

Published May 22, 2024

By Brooke Grindlinger, PhD

Panelists Paul Verweij, MD, FECMM (left), Professor of Clinical Mycology at Radboud University Medical Center of Expertise for Mycology; Tom Chiller, MD, MPHTM (center left), Chief of the Mycotic Diseases Branch at the Centers for Disease Control and Prevention; and John Rex, MD, FACP (center right), Chief Medical Officer at the antifungal biotech F2G, Ltd.; speak with public health journalist and author Maryn McKenna (right) at SXSW on March 11, 2024. The panelists discussed the real-life challenges posed by fungi and why fungal infections are becoming harder to treat.

Fungi are everywhere: in the soil, on our skin, and in the air we breathe. They give us the cheese on our burgers and the beer and wine we love. Despite their benefits, fungi aren’t always our friends. Every day, we inhale up to 100,000 or more fungal spores—our immune system usually keeps infections at bay. Yet, out of the estimated 2-11 million fungal species, about 200 can make us sick. On March 11, 2024, the South by Southwest Conference panel “Will Fungi Be the Last of Us?,” moderated by public health journalist and author Maryn McKenna, explored how fighting harmful fungal species is a growing public health challenge.

The Agricultural Connection: How Fungicides Fuel Drug Resistance

While we may inhale numerous fungi, our primary defense against fungal infections is our body temperature—most fungi can’t survive the heat of our lungs and prefer cooler environments. However, certain fungal species like Candida auris and Aspergillus thrive at human body temperature and can cause severe disease in hospitalized patients with weakened immune systems. Panelist Paul Verweij, MD, FECMM, Professor of Clinical Mycology at Radboud University Medical Center of Expertise for Mycology, highlighted the threat of Candida auris: “This is a new yeast, which is emerging, and has spread all over the world since 1996. One of the problems with (it) is that it is drug resistant.”

Dr. Verweij explained that exposure to agricultural azoles, chemical fungicides used on food crops, has driven this fungus to develop resistance to azoles. “The problem we face in hospitals is that we use the same type of drugs to treat our patients,” Verweij lamented.

The panel highlighted the urgent need for a comprehensive approach to the development of agricultural fungicides that do not have harmful ramifications for human health. Panelist John Rex, MD, FACP, Chief Medical Officer at the antifungal biotech F2G, Ltd., cited a 2023 concept paper issued by the US Environmental Protection Agency and developed in collaboration with the US Department of Health and Human Services, the US Department of Agriculture, and offices within the White House Executive Office of the President.

The paper, titled Concept for a Framework to Assess the Risk to the Effectiveness of Human and Animal Drugs Posed by Certain Antibacterial or Antifungal Pesticides, sought public feedback on potential solutions, research, or mitigation approaches to reduce the spread of antimicrobial resistance (AMR). Panelist Tom Chiller, MD, MPHTM, Chief of the Mycotic Diseases Branch at the Centers for Disease Control and Prevention added, “The key is that we’re bringing groups together that don’t traditionally talk. We need to recognize that we each have problems that are going to be solved with these medicines. But how do we do it together so that we don’t affect that critical treatment [for a] patient with a fungal disease?”

Rising Temperatures, Rising Threats: Fungi in a Changing Climate

Dr. Chiller also emphasized the impact of climate change on the evolution of fungal species. “Fungi live out in the environment. If the environment changes—and climate change is causing environmental changes—the fungi have to adapt. They are going to try to tolerate higher temperatures. We need to understand that more.” Chiller pointed to Valley Fever, caused by the soil-based fungus Coccidioides: “It’s mainly in the Southwest [of the US], but now we know that the geographic area of this fungus is spreading. I have to think that climate change is playing a role.”

Closer Cousins Than You Think

Dr. Rex highlighted a critical difference in treating bacterial versus fungal infections. “You’ve heard of things like penicillin, sulfa [drugs], and erythromycin. There are at least a dozen completely different kinds of treatments for bacterial infections.” In contrast, Rex noted, “for fungi, there are only three major classes. The reason …. is that, believe it or not, one of your closest cousins is the fungi. We’re quite closely related, genetically. To find something that just kills the fungus and not the person, that’s hard. There are very few novel classes [of antifungal drugs] and each one we find is a precious jewel.”

Rapid diagnosis of fungal infection also remains challenging. Patient symptoms are often non-specific, and the sensitivity and specificity of available tests vary widely. Dr. Verweij shared his clinical experiences: “With only two classes of drug treatment available for Aspergillus infection, resistance to one treatment leaves the physician with just one drug to administer to the patient.” He highlighted the severe toxic side effects and the limited reach of these drugs. “If the infection spreads from the lung to the brain, then it’s extremely difficult to treat, and you can end up with an untreatable infection.”

Reviving Antimicrobial Development: The Promise of the PASTEUR Act

“Over the past decade, we’ve had several new antibiotics get approved, and then the companies go bankrupt,” Dr. Rex noted. He emphasized the importance of creating a sustainable financial model for developing and distributing new antimicrobials. “I’m very concerned that the ecosystem of people who know how to invent these drugs is drying up,” he warned. Dr. Rex shared his 15-year involvement in the development of the Pioneering Antimicrobial Subscriptions To End Upsurging Resistance Act of 2023 (PASTEUR Act).

This bill, re-introduced in the US Senate in April 2023, aims to stimulate innovative drug development, improve the appropriate use of antibiotics, and ensure domestic availability of critical need antimicrobial medicines to prevent AMR from becoming the next global pandemic. The PASTEUR Act proposes an innovative payment model where the US federal government invests $6 billion over 10 years in novel antibiotics and antifungals through installment payments. In return, developers would provide their drugs free of charge to government programs once available. This initiative is designed to foster much-needed investment and prepare the nation’s health care system for the increasing threat of antibiotic- and antifungal-resistant infections.

Antifungal Development in the AI Era

Conference discussion also centered on the pervasive influence of artificial intelligence (AI) across diverse industries and its role in antifungal development naturally emerged. Dr. Rex emphasized the immense potential of AI tools in assessing the toxicity risks associated with promising molecules identified during drug development. He noted, “That has, so far, evaded all simple prediction tools.”

Learn more about the dual nature of fungi—beneficial allies and deadly foes—at the July 18, 2024 hybrid Academy event featuring a conversation with mycologist, immunologist, and author Arturo Casadevall, MD, PhD, about his new book, What if Fungi Win?

Using AI and Neuroscience to Transform Mental Health

A headshot of a woman smiling for the camera.

With a deep appreciation for the liberal arts, neuroscientist Marjorie Xie is developing AI systems to facilitate the treatment of mental health conditions and improve access to care.  

Published May 8, 2024

By Nick Fetty

As the daughter of a telecommunications professional and a software engineer, it may come as no surprise that Marjorie Xie was destined to pursue a career in STEM. What was less predictable was her journey through the field of artificial intelligence because of her liberal arts background.

From the City of Light to the Emerald City

Marjorie Xie, a member of the inaugural cohort of the AI and Society Fellowship, a collaboration between The New York Academy of Sciences and Arizona State University’s School for the Future of Innovation in Society, was born in Paris, France. Her parents, who grew up in Beijing, China, came to the City of Light to pursue their graduate studies, and they instilled in their daughter an appreciation for STEM as well as a strong work ethic.

The family moved to Seattle, Washington in 1995 when her father took a job with Microsoft. He was among the team of software engineers who developed the Windows operating system and the Internet Explorer web browser. Growing up, her father encouraged her to understand how computers work and even to learn some basic coding.

“Perhaps from his perspective, these skills were just as important as knowing how to read,” said Xie. “He emphasized to me; you want to be in control of the technology instead of letting technology control you.”

Xie’s parents gifted her a set of DK Encyclopedias as a child, her first serious exposure to science, which inspired her to take “field trips” into her backyard to collect and analyze samples. While her parents instilled in her an appreciation for science and technology, Xie admits her STEM classes were difficult and she had to work hard to understand the complexities. She said she was easily intimated by math growing up, but certain teachers helped her reframe her purpose in the classroom.

“My linear algebra teacher in college was extremely skilled at communicating abstract concepts and created a supportive learning environment – being a math student was no longer about knowing all the answers and avoiding mistakes,” she said. “It was about learning a new language of thought and exploring meaningful ways to use it. With this new perspective, I felt empowered to raise my hand and ask basic questions.”

She also loved reading and excelled in courses like philosophy, literature, and history, which gave her a deep appreciation for the humanities and would lay the groundwork for her future course of studies. Xie designed her own major in computational neuroscience at Princeton University, with her studies bringing in elements of philosophy, literature, and history.

“Throughout college, the task of choosing a major created a lot of tension within me between STEM and the humanities,” said Xie. “Designing my own major was a way of resolving this tension within the constraints of the academic system in which I was operating.”

She then pursued her PhD in Neurobiology and Behavior at Columbia University, where she used AI tools to build interpretable models of neural systems in the brain.

A Deep Dive into the Science of Artificial and Biological Intelligence

Xie worked in Columbia’s Center for Theoretical Neuroscience where she studied alongside physicists and used AI to understand how nervous systems work. Much of her work is based on the research of the late neuroscientist David Marr who explained information-processing systems at three levels: computation (what the system does), algorithm (how it does it), and implementation (what substrates are used).

“We were essentially using AI tools – specifically neural networks – as a language for describing the cerebellum at all of Marr’s levels,” said Xie. “A lot of the work understanding how the cerebellar architecture works came down to understanding the mathematics of neural networks. An equally important part was ensuring that the components of the model be mapped onto biologically meaningful phenomena that could be measured in animal behavior experiments.”

Her dissertation focused on the cerebellum, the region of the brain used during motor control, coordination, and the processing of language and emotions. She said the neural architecture of the cerebellum is “evolutionarily conserved” meaning it can be observed across many species, yet scientists don’t know exactly what it does.

“The mathematically beautiful work from Marr-Albus in the 1970s played a big role in starting a whole movement of modeling brain systems with neural networks. We wanted to extend these theories to explain how cerebellum-like architecture could support a wide range of behaviors,” Xie said.

As a computational neuroscientist, Xie learned how to map ideas between the math world and the natural world. She attributes her PhD advisor, Ashok Litwin-Kumar, an assistant professor of neuroscience at Columbia University, for playing a critical role in her development of this skill.

“Even though my current research as a postdoc is less focused on the neural level, this skill is still my bread and butter. I am grateful for the countless hours Ashok spent with me at the whiteboard,” Xie said.

Joining a Community of Socially Responsible Researchers

After completing her PhD, Xie interned with Basis Research Institute, where she developed models of avian cognition and social behavior. It was here that her mentor, Emily Mackevicius, co-founder and director at Basis, encouraged her to apply to the AI and Society Fellowship.

The Fellowship has enabled Xie to continue growing professionally through opportunities such as collaborations with research labs, the winter academic sessions at Arizona State, the Academy’s weekly AI and Society seminars, and by working with a cohort of like-minded scholars across diverse backgrounds, including the other two AI and Society Fellows Akuadasuo Ezenyilimba and Nitin Verma.

During the Fellowship, her interest in combining neuroscience and AI with mental health led her to develop research collaborations at Mt. Sinai Center for Computational Psychiatry. With the labs of Angela Radulescu and Xiaosi Gu, Xie is building computational models to understand causal relationships between attention and mood, with the goal of developing tools that will enable those with medical conditions like ADHD or bipolar disorder to better regulate their emotional states.

“The process of finding the right treatment can be a very trial-and-error based process,” said Xie. “When treatments work, we don’t necessarily know why they work. When they fail, we may not know why they fail. I’m interested in how AI, combined with a scientific understanding of the mind and brain, can facilitate the diagnosis and treatment process and respect its dynamic nature.”

Challenged to Look Beyond the Science

Xie says the Academy and Arizona State University communities have challenged her to venture beyond her role as a scientist and to think like a designer and as a public steward. This means thinking about AI from the perspective of stakeholders and engaging them in the decision-making process.

“Even the question of who are the stakeholders and what they care about requires careful investigation,” Xie said. “For whom am I building AI tools? What do these populations value and need? How can they be empowered and participate in decision-making effectively?”

More broadly, she considers what systems of accountability need to be in place to ensure that AI technology effectively serves the public. As a case study, Xie points to mainstream social media platforms that were designed to maximize user engagement, however the proxies they used for engagement have led to harmful effects such as addiction and increased polarization of beliefs.

She is also mindful that problems in mental health span multiple levels – biological, psychological, social, economic, and political.

“A big question on my mind is, what are the biggest public health needs around mental health and how can computational psychiatry and AI best support those needs?” Xie asked.

Xie hopes to explore these questions through avenues such as journalism and entrepreneurship. She wants to integrate various perspectives gained from lived experience.

“I want to see the world through the eyes of people experiencing mental health challenges and from providers of care. I want to be on the front lines of our mental health crises,” said Xie.

More than a Scientist

Outside of work, Xie serves as a resident fellow at the International House in New York City, where she organizes events to build community amongst a diverse group of graduate students from across the globe. Her curiosity about cultures around the world led her to visit a mosque for the first time, with Muslim residents from I-House, and to participate in Ramadan celebrations.

“That experience was deeply satisfying.” Xie said, “It compels me to get to know my neighbors even better.”

Xie starts her day by hitting the pool at 6:00 each morning with the U.S. Masters Swimming team at Columbia University. She approaches swimming differently now than when she was younger and competed competitively in an environment where she felt there was too much emphasis on living up to the expectations of others. Instead, she now looks at it as an opportunity to grow.

“Now, it’s about engaging in a continual process of learning,” she said. “Being around faster swimmers helps me learn through observation. It’s about being deliberate, exercising my autonomy to set my own goals instead of meeting other people’s expectations. It’s about giving my full attention to the present task, welcoming challenges, and approaching each challenge with openness and curiosity.”

Read about the other AI and Society Fellows: