Skip to main content

Showcasing The New York Academy of Sciences’ Spring 2024 Interns

Two interns pose with the Academy's bronze bust of Charles Darwin.

Throughout the year, The New York Academy of Sciences welcomes student interns who join staff teams to gain valuable firsthand experience working on practical projects that help to advance the Academy’s mission of “science for the public good.”

Published May 23, 2024

By Zamara Choudhary

The New York Academy of Sciences has a long history of supporting aspiring young professionals through its broad portfolio of education initiatives. And this spring, the Academy continues that legacy as a participant in the CUNY Spring Forward Internship Program which connects students with opportunities to further their professional development, apply their academic skills outside of the classroom, explore careers and gain critical work experience.

Founded in 2022, the Program covers four key areas: healthcare; marketing and communications; community service, non-profit, or social services; and STEM, all generously funded by the Research Foundation at CUNY. The Education team at the Academy hosts two interns through the STEM priority area. Rosemary Puckett, Program Manager, Mentored Research Programs and Kaitlin Green, Senior Program Manager, Virtual Programs, oversaw the work of Isabella Alfaro and Sumaiya Sultana in spring 20204.

Isabella Alfaro, Mentor and Data Intern

Photo by Nick Fetty/The New York Academy of Sciences

A student at LaGuardia Community College studying computer science, Isabella came to the Academy seeking to improve her communication skills, learn more about professional collaboration and become more comfortable in a professional work environment.

Most of her time was devoted to the Clifford Chance Cornerstone initiative. This initiative engages students in Kigali, Rwanda by equipping them with the knowledge and skills needed to develop innovative solutions that address food scarcity and the effects of climate change in their communities. She provided key technical, administrative, and programmatic support, enriching the program with her expertise and perspectives.

Isabella’s long-term goal is to become a researcher in AI, and her internship at the Academy helped support and inform this interest. She attended AI & Society seminars and other Academy programming, which helped broaden her network and expose her to new ideas.

“My biggest takeaway from this internship experience was the importance of effective communication,” said Isabella. “By fostering open communication, we aligned our goals, addressed issues promptly, and completed the project efficiently. This experience taught me how to navigate and contribute to a collaborative environment, a skill that will be invaluable in my future career.”

Sumaiya Sultana, The Junior Academy Intern

Photo by Nick Fetty/The New York Academy of Sciences

Sumaiya is studying chemical engineering at The City College of New York. She was excited to gain new skills, further her professional development and discover new interests through an internship at the Academy. She worked closely with Kaitlin Green and Sabrina Debler, Program Assistant, Education to support The Junior Academy, a global community of young people, ages 13-17, who work together under the guidance of STEM experts to devise solutions for STEM Open Innovation Challenges.

Sumaiya was an incredible asset to The Junior Academy team in Education, preparing and fine-tuning multiple materials and taking advantage of opportunities for learning and personal growth. She intends to pursue internships and other opportunities that would allow her to broaden her technical knowledge and gain on-site training in engineering.

“The biggest take way from the internship was gaining valuable experience in navigating multiple projects in an office environment. I developed several key skills such as time management, adaptability, and effective communication,” Sumaiya said.

“Exceeded our Expectations”

The culmination of Isabella’s and Sumaiya’s internships was The Academy Intern and Volunteer Showcase, where they developed their public speaking skills by sharing their accomplishments and insights about their internship experience to Academy staff. This was the first time both interns had given a group presentation, and they collaborated extremely well, highlighting each other’s strengths and finding the commonalities in their experiences.

“Isabella and Sumaiya both exceeded our expectations and contributed immensely to the Academy. This was their first internship experience, and it was a pleasure and a privilege to support them in this early part of their careers. We look forward to following their next steps and hosting more interns in the future,” said Meghan Groome, PhD, Senior Vice President of Education for the Academy.

Isabella (left) and Sumaiya pose with the bust of Charles Darwin, the renowned evolutionary biologist and an honorary member of the Academy, located in the Academy’s office at 115 Broadway. Photo by Nick Fetty/The New York Academy of Sciences

Exploring the Age-Old Question of “Why We Die?”

A man presents during an event at The New York Academy of Sciences.

Nobel Laureate Venki Ramakrishnan, world-renowned molecular biologist, presents the science about why humans die.

Published May 7, 2024

By Nick Fetty

Nobel Prize winner Venki Ramakrishnan is interviewed by Titia de Lange, Director of The Rockefeller University’s Anderson Center for Cancer Research, at The New York Academy of Sciences on April 16, 2024. Photo by Nick Fetty/The New York Academy of Sciences

Why do we die? This age-old question is the topic of Nobel Prize-winning author Venki Ramakrishnan’s book Why We Die: The New Science of Aging and the Quest for Immortality.

Photo by Nick Fetty/The New York Academy of Sciences

Ramakrishnan discussed his new book with Titia de Lange, Director of The Rockefeller University’s Anderson Center for Cancer Research, during the “Authors at the Academy” event at The New York Academy of Sciences on April 16, 2024. He began by suggesting that humans may be the only species aware of its own mortality.

While societies have long focused on both the philosophical and the scientific dimensions of mortality, Ramakrishnan pointed out that aging research was considered “something of a backwater in molecular biology for a long time.” It’s only been over the past half-century that this field of research has become more mainstream.

“[While there have been advances in the research], because this is an area that people are concerned about, and they’re anxious about, there’s also a lot of hype,” said Ramakrishnan, who is also a member of the Academy’s President’s Council.

As a molecular biologist, Ramakrishnan avoided speculation, focusing instead on researching an objective, scientifically-based case about aging and mortality.

Evolution and Mortality

Ramakrishnan said there is a wide range in lifecycles of different creatures, from a mayfly which can live for just a day, to certain species of sharks and whales that may live for more than a century.

“A giant tortoise might be around today that could have encountered [Charles] Darwin,” Ramakrishnan said, with a nod to the renowned evolutionary biologist who was an honorary member of the Academy more than a century ago.

Photo by Nick Fetty/The New York Academy of Sciences

Researchers believe that evolution is largely focused on fitness, which, in this context, Ramakrishnan defined as “maximizing the ability to successfully pass on your genes.” Part of this fitness is tied to physical size. He pointed out that creatures like mice tend to have shorter lifespans than an elephant or a whale.

“You might ask, why is that?” Ramakrishnan said. “Well, aging is an accumulation of chemical damage which manifests itself from the molecular level all the way to the entire organism. To repair such damage takes lots of resources and lots of energy. So, this has a cost because animals are always trying to get energy.”

From an evolutionary standpoint, to maximize fitness it’s more advantageous for a creature like a mouse to allocate its resources to features such as rapid growth, rapid maturation, and producing many offspring. Conversely, larger animals allocate resources to repairing and maintaining natural chemical damage because such creatures need to live longer to raise their offspring to full maturity, Ramakrishnan argued.

This is what evolutionary biologists call the Antagonistic Pleiotropy theory. Based on this theory, genes that involve rapid growth or rapid maturation often turn out to be detrimental later in life and contribute to aging.

Photo by Nick Fetty/The New York Academy of Sciences

The Metabolic Rate Theory of Aging

According to Ramakrishnan, the metabolic rate theory states that “if you have increased metabolism then you’re generating byproducts…like free radicals and reactive species which can cause damage. So, the faster your metabolism is, the more likely the higher the rate at which you’re going to age.”

Generally, a faster metabolism means a shorter lifespan, but Ramakrishnan said this is not always the case. He used the example of some species of smaller bats, that are similar in size to mice, but because of the bat’s ability to fly, are less likely to be targets of predators, and can live for as long as 40 years.

“I think biologists would say it’s really about evolutionary choice and how each species has been selected for optimizing that choice,” said Ramakrishnan. “That choice could be, yes there’s damage but you can also repair the damage, so how much do you spend on repairing the damage?”

Researchers who study aging are divided about the potential maximum lifespan of humans. Some believe that 115 is the top of the range, while others feel that the first person to live to 150 has already been born. Ramakrishnan said he thinks the current natural limit is around 120 years, citing the fact that the number of centenarians (those who live to the age of 100) has increased in recent decades, but the number of people who live past the age of 110 has not.

“That suggests that those people who reach 110, are hitting some natural limit of our biology, of our species,” said Ramakrishnan, adding that he feels that those who think the upper limit is 150 are being “excessively optimistic.”

Societal Impacts of Expanded Lifespans

Photo by Nick Fetty/The New York Academy of Sciences

Science aside, what are the societal impacts of expanded lifespans? Several private sector tech billionaires have shown interest in extending lifespans. As Ramakrishnan points out, the issue has also been on the radar of government agencies such as NIH’s National Institute on Aging in the US or the Medical Research Council in the UK.

“So, the question is how do we keep people healthy for as long as possible so people can stay productive?” asked Ramakrishnan.

The answer may well lie with the next generation of scientists who will bring in innovative ideas and fresh perspectives. While Ramakrishnan remains productive, he concedes it may be time to retire next year.

“I think there are lots of roles we can play without taking away resources from the younger people,” said Ramakrishnan, citing examples like serving on editorial boards or as mentors. “Generational turnover is good for society and good for science.”

For on-demand video access to the full event, click here.

Check out the other events from our 2024 Authors at the Academy Series

Full video of these events is available, please visit nyas.org/ondemand

What Near-Death and Psychedelic Experiences Reveal about Human Consciousness

A colorful illustration meant to depict something psychedelic.

A recent Academy event explored near-death experiences and the medical application of psychedelic remedies, combining elements of science and philosophy.

Published June 9, 2023

By David Freeman

What is the nature of consciousness? What happens to it at the brink of death—and beyond? In what ways can the scientific study of near-death experiences and the medicinal use of psychedelic compounds boost our understanding of the human condition and our ability to ease emotional suffering?

These and related questions were the focus of an Academy conference held on June 8, 2023, in New York City. The one-day event included presentations by psychologists, neurologists, biomedical researchers and a religious scholar. Additionally, there was a gripping first-person account of a near-death experience from renowned journalist and author Sebastian Junger.

What are Near-Death Experiences?

Near-death experiences, or NDE’s, are deeply affecting, often mystical episodes. Experts call them periods of “disconnected consciousness.” They affect some people who are close to death or in situations of grave physical or emotional danger. They are commonly marked by feelings of floating outside one’s body and the sensation of moving toward a bright light, as well with as encounters with dead relatives.

NDE’s have been documented across many different cultures and have been known since ancient times. “We’re talking about something that could be hundreds of thousands of years old,” said Brian C. Muraresku. He is the author of the 2020 book “The Immortality Key.” His book examines scientific evidence for the ritual use of psychedelics in classical antiquity. He was also one of the speakers at the conference.

There’s something about that kind of experience—near-death, psychedelic, mystical, whatever it is—that holds the entire human race together.

Brian C. Muraresku, author “The Immortality Key”

NDE’s are now known to be remarkably common. In recent research, 15 percent of intensive care unit patients reported having one. As did up to 23 percent of survivors of cardiac arrest. This is according to neuropsychologist Helena Cassol, Ph.D. Dr. Cassol is the scientific coordinator of Neurological Rehabilitation Center of the University Hospital of Liege in Belgium and also presented at the conference.

“More people have survived cardiac arrest and other situations and could recall those experiences” as a result of improved resuscitation techniques that have become available in recent years, she explained. She added that NDE’s now represent an emerging field of scientific research.

NDE’s can be personally transformative. Some people report a reduced fear of death in the wake of an NDE. Others report enhanced feelings of compassion or purpose. But some are saddled with a pattern of persistent intrusive thoughts or dreams or other negative after-effects. Given these possibilities, “I think it is important for people to be able to talk about these experiences and be heard in a nonjudgmental way,” Dr. Cassol said.

The Evolution of Near-Death Experiences

There may be an evolutionary basis for NDE’s. Daniel Kondziella, M.D., Ph.D., is a neurologist at Copenhagen University Hospital and an associate professor at the University of Copenhagen in Denmark. During his conference presnetation he described research linking the episodes to thanatosis. That’s the well-documented and remarkably consistent phenomenon in which animals—even insects—feign death in order to avoid being killed by predators.

The research suggests that the evolution of language in humans gave us the unique ability to transform this stereotyped behavior into the rich narratives used to describe the mysterious sensations and perceptions commonly seen in near-death experiences, Dr. Kondziella said. Not everyone is convinced by such research.

“Evolutionary explanations are just-so stories,” said Christof Koch, Ph.D. Dr. Koch is chief scientist and president of the Allen Institute for Brain Science, and also presented at the conference. “They may be true. They made be false. It just doesn’t matter. But the fact that we do have experiences—that is the remarkable thing.”

Studies of the neurological underpinnings of NDE’s suggest that the phenomenon arises amid a sort of blending of conscious states: waking, rapid-eye movement (REM) sleep and non-REM sleep.

“The physiological balance between conscious states is disrupted during the conditions of near-death, leading the brainstem arousal system controlling conscious states to blend waking and rapid eye movement consciousness into a hybrid state” known as REM intrusion,” said Kevin R. Nelson, M.D., a University of Kentucky neurologist and another speaker at the conference. “REM intrusion leads to many key features of near-death, including lying still, visual activation, out-of-body, and the experience’s narrative qualities.”

Most individuals who experience near-death are physiologically predisposed to REM intrusion, according to Dr. Nelson.

Psychedelics as Medical Treatment

As some scientists work to gain a better understanding of NDE’s, others are pursuing clinical trials of psychedelic compounds, which have been shown to trigger an altered state of awareness similar to that seen in people experiencing an NDE. A growing body of evidence suggests that these compounds—given under expert supervision and in carefully controlled settings—can ease emotional distress in terminally ill people quite profoundly.

One landmark 2016 study by researchers including Anthony P. Bossis, Ph.D., clinical assistant professor of psychiatry at NYU Grossman School of Medicine and another speaker at the conference, showed that a single treatment with psilocybin—a psychoactive compound found in some mushroom species that humans have consumed for thousands of years—brought rapid reductions in depression, anxiety, and hopelessness in people with terminal cancer.

The benefits of psilocybin treatment were greatest among individuals who reported strong mystical experiences during the sessions, according to Dr. Bossis. “The more robust that mystical experience, the greater the outcome in terms of reduction of depression,” he said. “These aren’t NDE’s,” he added, “but they’re deathlike experiences with a similar phenomenology.”

Recent research shows that psilocybin is just one of many drugs that can induce NDE-like such experiences and suggests that those induced by ketamine, an anesthetic with hallucinogenic effects, show greater similarity to NDE’s than those induced by psilocybin. But “we only studied the phenomenological similarity between subjective experiences” and didn’t assess the extent to which any of the drugs might be effective treatments for depression, said Charlotte Martial, Ph.D., a neuropsychologist at the University of Liege in Belgium and another conference speaker.

Junger’s Brush with Death

Sebastian Junger’s brush with death came three years ago, following the rupture of an aneurysm in his pancreatic artery. As doctors rushed to stanch the bleeding that threatened his survival, he recalled, he encountered an “infinitely dark” pit that threatened to pull him in but also the welcoming “essence” of his beloved, long-dead father. “It wasn’t quite a vision. It was halfway between a vision and a feeling,” he said.

A self-described atheist whose father was a physicist, Junger said the experience nonetheless led him to reconsider his ideas not only about life and death but about the nature of the universe.

“I wish I could say I believe in an afterlife. I don’t. But I definitely have lost the certitude of my rationality,” he said, adding that he now believes it was possible that “some kind of energy or quantum phenomena” interacts with reality in ways we don’t understand.

If some see NDE’s as possible evidence of the supernatural or a phenomenon beyond the scope of scientific knowledge, others are convinced that they are simply the result of physiological processes—such as the oxygen starvation to the brain that can result from cardiac arrest.

There is a “perfectly natural explanation for NDE’s,” said Dr. Kondziella. “No need to postulate any supernatural events.”

But Raymond A. Moody, Jr., M.D., Ph.D., the keynote speaker whose remarks set the stage for the conference, expressed uncertainty over what near-death experiences actually represent.

Science? Or philosophy?

“I really just don’t know,” he said. “I think the questions that we are dealing with—a lot of them are not yet scientific questions,” he added. “They are philosophical questions.”

Dr. Moody is the author of the 1975 book “Life after Life” that sparked interest in near-death experiences. He has been documenting NDE’s for many years and is credited with coining the term near-death experience.

Uncertainty about life’s transcendent questions is inevitable, according to Karen Armstrong, a London-based author of numerous books on religious affairs and the other keynote speaker at the conference.

“Neither religion nor science can really respond. Ultimately, we are all in a ‘Cloud of Unknowing,’” she said in a reference to an anonymous 14th Century text on spirituality and Christian mysticism. “We are all just trying to find some meaning in it all,” she added, “without which we humans fall very easily into despair.”

For Brian C. Muraresku, the strange perceptions and complex emotions seen in near-death and similar visionary experiences are central to the human experience. “There’s something about that kind of experience—near-death, psychedelic, mystical, whatever it is—that holds the entire human race together.”

Also read: Music on the Mind: A Neurologist’s Take

In Step with the UN on Science for Sustainable Development

Flags for different countries flying outside of the United Nations.

How ISR can help in fast-moving crises to protect progress on the UN Sustainable Development Goals.

Published November 15, 2022

By ISR Staff

For a United Nations discussion of the role of science in solving the world’s most urgent problems, the International Science Reserve (ISR) convened a panel of experts from the ISR network, across academic, private and public sectors. The recording is now available on-demand (viewing instructions below). 

The panel was moderated by Mila Rosenthal, Executive Director of the International Science Reserve, and included:  

  • Nicholas Dirks, President & CEO, New York Academy of Sciences, ISR Executive Board Co-chair 
  • Erwin Gianchandani, Assistant Director for Technology, Innovation and Partnerships National Science Foundation, Federal Liaison to the ISR 
  • Tracy Marshall, University of the West Indies St. Augustine Campus. Trinidad and Tobago, ISR Science Community Member 
  • Philip Nelson, Director, AI for Social Good, Google AI, ISR Executive Board Member 

The webinar was part of the United Nations General Assembly’s Science Summit, where we discussed how the ISR can help in fast-moving climate and health-related crises to protect progress on the UN Sustainable Development Goals – the Global Goals – and limit the damage to communities and habitats.

Mila Rosenthal (ISR) introduces the Sustainable Development Goals (SDGs) and their relationship to crises.

When a crisis hits, the International Science Reserve will help scientists in our network get additional access to specialized human and technical resources, like remote sensing, geospatial mapping and high-performance computing, so that they can apply their research for crisis response.

Here are two big takeaways from the discussion:

1. Human networks are key, and they need to include everyone to make sure that science and technology is aimed at helping the most vulnerable people and most fragile environments.

Erwin Gianchandani (NSF) on how the ISR democratizes access to resources.
Philip Nelson (Google AI) on the power of coming together.
Tracy Marshall (University of the West Indies – St. Augustine Campus) on how the ISR will support her work as a scientist. 

2. You can’t just throw money at a crisis and expect rapid response solutions.  You have to learn from previous experiences and prepare in advance. 

For example, the ISR is keeping the life-saving public-private connections made during COVID-19 alive in order to prepare for the next crisis. 

Erwin Gianchandani (NSF) on why networks are just as important as money in times of crisis research.
Nicholas Dirks (NYAS) on collaboration between the public and private sector during crisis.
Tracy Marshall (University of the West Indies – St. Augustine) on valuing local contexts in disaster management research. 
Philip Nelson (Google AI) on solving crisis-related problems in an open environment. 

— 

Do you want to watch the whole webinar? Here are three steps to rewatch the panel through the ISR Science Unusual series on-demand:   

  • Register for the webinar using this link  
  • Then, click “Join Event”  
  • After logging in, select the “Schedule” menu, or the grid menu (small squares) on mobile, located at the top of your screen, then click “On Demand” 

Scientists Hunt for Clues to Post-Wildfire Recovery in Argentina  

A researcher pours a liquid into a breaker containing a soil sample.

In August, wildfires left lasting economic damage while scorching forests and pastureland.

Published September 23, 2022

By ISR Staff

In August, wildfires ripped through the Córdoba Province in central Argentina, leaving economic damage and scorched forests and pastureland in its wake. Argentina is no stranger to wildfires, but climate change is making the fires more frequent, widespread and complex – and the impacts of drought and fires are stretching across borders.  

After thousands of acres in northern Argentina burned in February of 2022, ash clouds flew into Argentina’s neighbor, Paraguay, harming local residents’ health with smog-filled air. The country made international headlines just two years prior when another set of fires in Córdoba burned 60,000 hectares of flora, fauna, grassland, forests, and homes.  

Studying Changes to Soil Properties

Healthy farmland and soil are critical to the region, given that it relies heavily on its agricultural industry, like cattle farming. Crisis after crisis has forced the region’s leading scientists to rethink how fire-driven changes to soil properties implicates vegetation, plant regeneration and ecosystem services. And it has pushed them to work together across borders and scientific disciplines.  

“In late September 2020, it was easy to see from the Córdoba City the thick black plumes of smoke rising from the ranges, while hellish images were shown on TV and social media,” said Dr. Maria Gabriela Garcia, International Science Reserve community member and a geologist based in Córdoba. “This situation led me to wonder to what extent the fires have altered the chemical and physical properties of the soils, and ultimately, impacted their fertility and runoff control capacity.” 

After the 2020 fires, Argentina’s National Council of Science and Technology (CONICET) called researchers together from different disciplines to propose actions and lines of research that deal with different aspects of this crisis. Today, geologists, mineralogists, chemists, microbiologists and ecologists, are all working all together to rapidly characterize the dynamics of post-fire recovery.  

On the Hunt for Stronger Data

One unique collective of Argentinian scientists are on the hunt for stronger data about the soil in the aftermath of extreme wildfires. Through the NCST, Dr. Estela Cecilia Mlewski, a microbiologist, met Dr. Garcia, a professor at the National University of Córdoba. 

The team also brought on Edith Filippini, a lichenologist focused on ecological studies and biomonitoring of environments affected by fire; Romina Cecilia Torres – a specialist in postfire regeneration by resprouting and seedlings; and Daihana Argibay – a specialist in satellite image analysis. 

The group’s collected data will be fundamental to understanding the geochemical and microbiological disturbances that occur in soils of a semi-arid mountainous area of southern South America affected by forest fires, and help researchers design effective strategies for remediation of the affected ecosystems across the region. If their research can find the presence of microorganisms, for example, there is an opportunity for regrowth and regeneration of local flora – which could lessen the fires’ impact on farming or other ecological or economic activities. 

The Utility of the International Science Reserve

The group recently worked together on the International Science Reserve’s readiness exercise on wildfires. The ISR conducts readiness exercises – or scenarios – to bring scientists from across borders and disciplines together to prepare for crisis. The Argentinian scientists believe that the International Science Reserve can be useful for giving researchers the tools for fire prevention and support through much needed resources to predict fire behavior, and help in control and monitoring tasks against a crisis.  

“The ISR is an excellent opportunity to know researchers around the world working on similar aspects to us. It gives us the potential to generate collaborations between foreign groups and enrich our knowledge. The ISR’s readiness exercises can improve existing tools and more importantly, expand our ideas,” Dr. Mlewski recently told the ISR team in an interview. 

If you are interested in joining the International Science Reserve network and collaborating with scientists like the Argentinian group, please visit our sign-up page to learn more about becoming a member of the ISR community. 

A New Administration and a Renewed Investment in STEM

A woman poses for the camera.

Alondra Nelson and Nicholas Dirks discuss the priorities for the Biden-Harris Administration’s Office of Science and Technology Policy.

Published December 23, 2021

By Roger Torda

Alondra Nelson

Alondra Nelson, at The New York Academy of Sciences’ (the Academy’s) recent Annual Meeting, told an audience of Academy Members that science, like representative government, is always a work-in-progress. “There’s an interesting parallel between scientific research and democracy in the sense that they both are never quite realized, never quite finished, never quite perfected,” said Nelson, a sociologist who serves as the inaugural Deputy Director for Science and Society in the White House Office of Science and Technology Policy (OSTP). She recently joined Academy President Nicholas Dirks for a virtual discussion titled “Renewed Investment in STEM.”

Nelson is a Professor at the Institute for Advanced Study in Princeton, New Jersey. Nelson’s earlier positions include President of the Social Science Research Council, an international research nonprofit organization, professor of sociology at Columbia University, and Columbia’s dean of social science. She has an extensive record of research on issues at the intersection of science, technology, and society.

“I have always been interested in race and racism and social inequality,” she said in her conversation with Dirks. “I’m particularly interested in how new and emerging technologies impact, for good and for bad, vulnerable communities…So that really has, I think, forged the experience that I brought into public service, this conviction that science and technology are inherently social things, and that when they enter the world, they do social things, they do political things.”

The Promise of Science and Technology

Nelson’s PhD dissertation at New York University grew into her first book, Body and Soul, about the Black Panther Party’s health activism in the late 1960s, especially its use of newly-available genetic screening tests for sickle cell anemia. “This new technology allowed a social movement to do these tests in the park and in auditoriums,” Nelson said. “It was really a new technology, SICKLEDEX, introduced in 1968, that allowed all of these social possibilities to happen around it, and allowed what we would call today ‘patient advocacy’ around a genetic disease.”

In her second book, The Social Life of DNA, Nelson was one of the first social scientists to write about direct-to-consumer genetic testing. The approach reflected her interests in inequality, the empowerment of communities, and the way communities make use of new technologies. As she told Dirks, the book explores complex issues in genetic genealogy, including how African Americans who are descendants of slavery can “use these technologies to try to look back to the past and … complete genealogical stories about themselves and about their families.” She said these new technological and scientific points in history are opportunities to think about how science and technology can “make our lives safer, better, fairer, more just.”

The Interplay of Science and Community

Nelson suggests that an awareness of the interplay of science and community is historically necessary and especially important right now:

[T]he Biden-Harris administration [faced] … some pretty pronounced crises, all of which have something to do with science and technology…There was this-once-in-a-century pandemic that’s still raging all around us. We’re obviously in the middle of a climate emergency…There’s a complex set of national security threats…ransomware attacks and cyber security issues…and then issues around injustice and inequity throughout society. Health outcomes during the pandemic, educational outcomes, and sort of everything in between.

Later in the discussion, Nelson used a campaign slogan of President Biden’s to frame this critical moment: “What does it mean to do science, and science and technology policy, in a way that ‘builds back better’?”

The answer, Dr. Nelson suggests, includes the recognition that hard science alone cannot do the job:

“It was amazing that we had SARS-CoV-2 decoded, the genome, in less than a month. And wow, it was like earth shattering and incredible that we had in 313 days, 314 days, a viable vaccine…[yet] we’ve spent all of the rest of the time trying to get people to use it…So, it was clear that social science, social issues, thinking about inequality, was going to have to be a course. And we had the…incredible, tragic disparities around race, around ethnicity, and immigration status, with regard to rates of people perishing.”

Reframing How We Think About the World

Nelson pointed out that her boss, Eric Lander, is the first Director of OSTP whose work has been in the life sciences, and that this is helping focus the Office’s work on healthcare issues, including pandemic preparedness. Nelson also described the value of the administration’s proposed ARPA-H agency, designed to fund advanced research projects to improve healthcare capabilities and platforms. She said this approach can support research in maternal health, maternal mortality rates, and behavioral science.

Nelson and Lander are also tackling problems resulting from bias in artificial intelligence data sets that can lead to discrimination in housing, employment, and healthcare. They are calling on the public to submit information about biometric technologies that might support a new “AI Bill of Rights.”

Amid global challenges and crises, Nelson seems optimistic. She refers to President Biden’s belief that difficult moments can lead to “promise and possibility” rather than peril. And she said of her own goals: “I really want to challenge folks in industry, folks in academia, to think about upstream issues, and to think about equity and justice, and safety in science and technology, as a kind of ‘innovation’, and to reframe how we think about that word.”

Nicholas Dirks used the occasion of the Academy’s Annual Meeting to outline plans for the International Science Reserve (ISR), a collaboration with IBM and other stakeholders to mobilize scientific communities to respond to global crises.

Do you want to be part of this impactful network of scientists? Join the ISR today

NYC Teacher Brings STEM to Her Social Studies Class

A woman poses for the camera with NYC's Brooklyn Bridge in the background.

Servena Narine, who teaches at a New York City public school in Brooklyn, uses science, technology, engineering, and math (STEM) skills to help her elementary school students master their social studies curriculum.

Published November 2, 2020

By Roger Torda

This summer, Narine used time made available because of the COVID-19 shutdown to take The New York Academy of Sciences’ online course STEM Education in the 21st Century. During the eight-week course, she designed a curriculum for fourth-grade students. One of the units called for students to use data analytics in creating an infographic to “tell a story about the effects of immigration on New York City’s industrial growth in the 1900s.”

The Seven Essential STEM Skills

Servena Narine outside her classroom at PS 307 in Brooklyn

“It was a course where we incorporated seven essential STEM skills into our teaching,” Narine said in a recent phone interview. “I think sometimes as teachers we do that naturally, but through the course I was able to more deeply integrate the STEM skills into my lesson plans.”

Narine was referring to seven skills Identified by the Academy’s STEM Education Framework. critical thinking, problem solving, creativity, communication, collaboration, data literacy, and digital literacy and computer science. These skills form the foundation of the course.

“The Academy developed its Framework back in 2016 as a research-based tool that can be used to ensure students receive high-quality STEM learning,” said Chris Link, the Academy’s Director of Education. “Our online course coaches teachers on strategies they can use to help their students build critical 21st-century skills.”

“Eight years ago, my school became a magnet school for STEM studies,” Narine explained, referring to PS 307, which serves pre-K through fifth grade in the Vinegar Hill neighborhood of Brooklyn. “I’m always looking to learn more about what it means to be a STEM school, and what it means to integrate the principles of STEM into the classroom. When I saw that this course was available, and that it was free, and that I had time on my hands because everyone was self-isolating because of COVID-19, I jumped right into it.”

Continuing Teacher and Leader Education

Narine was one of 100 New York City teachers enrolled in the course through the sponsorship of Medidata, which has supported several Academy STEM programs. Narine and other teachers who completed the course received 30 Continuing Teacher and Leader Education (CTLE) credits required by New York State to maintain certification.

“I loved that the course was asynchronous, so I could set a schedule for myself,” Narine said. “The participants, the other teachers, all reviewed each others’ work, and offered feedback. That was a great benefit. And I loved that for each of the seven skills there was an expert in the field who was able to share information.

Narine’s course not only incorporated STEM skills, but aligned closely with the state’s Passport to Social Studies curriculum. To develop critical thinking skills, one of her units calls on students to analyze documents from the Colonial and Revolutionary War periods. A unit on problem solving asks students to develop solutions to clashes between Native Americans and colonists.

Cross-Interdisciplinary Skills for Students

A unit on the geography of New York calls for creativity in designing maps to promote tourist destinations. Yet another unit is designed to promote collaboration skills as teams make a game to test knowledge of material covered in earlier units. These cross-disciplinary skills serve students in their social studies classes, their STEM classes, and beyond.

“The curriculum asks students to look at Native Americans as the first inhabitants of New York State,” Narine said, explaining how she started thinking about a unit that would focus on communication skills, another area of focus in the Academy’s online course.

“I remember thinking that we’d be learning about Native Americans in the region around the time we’d be celebrating Thanksgiving,” she continued. “And I thought it would be nice to have the children create a public service announcement to give thanks to Native Americans for the contributions they have made to New York State and to our society, rather than the other way around, where we pretty much look at the European influence and teach that it is because of the Europeans that we have Thanksgiving. I said, ‘Let’s turn it around and say thank you to the first inhabitants of New York for their contributions.’”

Devising New Therapies Across Borders

Award winners pose together with their trophies.

When Japanese physicist Kumiko Hayashi of Tohoku University and neuroscientist Ephraim Trakhtenberg of the University of Connecticut met at the New York Academy of Sciences this year, the synergies between their work weren’t immediately obvious.

Published October 1, 2017

By Hallie Kapner

The two scientists were paired together as part of the Interstellar Initiative, a joint project of the Academy and the Japan Agency for Medical Research and Development (AMED), which grouped 50 early-career scientists from around the world for interdisciplinary research projects.

“The biggest global challenges, whether in health, the environment, or energy, require scientists with different expertise to work together,” said Academy President & CEO Ellis Rubinstein. “The Interstellar Initiative brings together brilliant young scientists who would likely never cross paths, and supports them as they develop solutions to major health issues.”

Devising New Therapies

Hayashi and Trakhtenberg are devising new therapies to restore neuronal function following injury. As human cells mature, their ability to replicate is severely reduced. This phenomenon is especially prevalent in the brain, where the creation of new neurons exists only at very low levels in adulthood. Trakhtenberg’s work suggests that motor proteins may be involved in this loss.

“If we can understand the dynamics of these proteins, we may be able to reverse the process,” he said. Over the past several years, Hayashi developed novel algorithms that can be applied to motor protein measurement and analysis. “I don’t know much about neuroscience,” she said, “but it turns out that my algorithms can illuminate some mechanisms of the brain.”

From left to right: President Suematsu, Japan Agency for Medical Research and Development (AMED), recognizes the collaborative work of Japanese physicist Kumiko Hayashi, Tohoku University and neuroscientist Ephraim Trakhtenberg, University of Connecticut, along with Ellis Rubinstein, President and CEO, New York Academy of Sciences at the recent Interstellar Initiative workshop presented by AMED and the Academy.

International Collaboration

This teamwork is precisely what AMED president Makoto Suematsu envisioned creating through the Interstellar Initiative, part of a broader strategy to bring international partnerships and new funding streams to Japan’s R & D pipeline. As technological advances that enable data sharing and ease remote collaboration have become ubiquitous, Suematsu believes it is crucial for Japanese researchers to join global research efforts.

“International collaboration is critical in many fields,” Suematsu said. “From infectious disease outbreaks to cancer treatment and drug development, we can accomplish much more when we reach out, shake hands and collaborate.”

Cancer Research

Another Interstellar Initiative team, comprised of NYU biologist Carlos Carmona-Fontaine, oncologist Valerie Chew of Singapore Health Services and physicist Shuichi Shimma of Osaka University, is juggling large time differences and global transport of perishable patient samples as they pursue their project. Blending Chew’s expertise in oncology with Carmona-Fontaine’s efforts to understand the role of metabolites in cancer cells and Shimma’s imaging techniques, the group is uncovering the interplay of metabolite activity and immune changes in tumor cells.

Noting that the Interstellar Initiative breaks down barriers that inhibit cross-disciplinary partnerships, Carmona-Fontaine commented that scientists “usually stick to our own communities, and there’s often a disconnect between scientists from different parts of the world — yet there are many advantages to learning different ways to look at a similar problem.” Chew was thrilled to be paired with teammates who brought both new expertise and new technologies. “If you’re working in your own zone, you’ll do what’s familiar,” she said. “But bringing together different disciplines and technologies creates a novel, creative environment for solving problems.”

Realizing Applications For Their Research

Proposals devised by Interstellar Initiative teams will be submitted to international funding agencies. For physician and biologist Deepak Lamba and biologist Akira Satoh, such funding may help them realize applications for their research. Lamba, who is developing methods for using stem cells to repair retinal tissue, is working with Satoh, whose research is illuminating the regenerative pathways of amphibians. They are probing the factors that influence regenerative capabilities in mammalian and amphibious cells, with the hope of developing methods of repairing and regenerating damaged tissue.

“[Stem cell research is] moving so quickly that I think we’ll start seeing applications in the not-so-distant future,” Lamba said. Satoh noted that stem cell research is less popular among Japanese scientists, while Lamba added that few labs in the US are using amphibians to study regenerative pathways. “We would never have done this on our own — it’s a unique challenge for us to do together.”

Rubinstein is quick to highlight that this is just the beginning for the Interstellar Initiative. “This is only our first cohort, and there’s so much exciting research in the works already,” he said.

Also read: A New Approach to Studying Aging and Improving Health

The Case for Inter-Galactic Biodiversity

A colorful image of the galaxy.

Astrophysicists must consider various scientific factors as they search for habitable planets. What role does inter-galactic biodiversity play? And what makes a planet biologically active?

Published April 19, 2011

By Diana Friedman

Image courtesy of Maximusdn via stock.adobe.com.

On April 12, 2011, Ben Oppenheimer, a comparative exoplanetary scientist, spoke to educators, students, and amateur astronomers at The New York Academy of Sciences (the Academy) about Inter-Galactic Biodiversity: Astrophysicists’ Search for Habitable Planets. Oppenheimer’s work often straddles the world of philosophy and science as he tackles the engineering and astrophysics of the search for habitable planets. He constantly grapples with the question “What if we actually find life on other planets?” as he engineers better ways to collect, analyze, and interpret the brightness of light as a function of wavelength, that is emitted or reflected by not too distant planets and their stars.

While Oppenheimer is an astrophysicist by training, his main area of study and the subject of his talk at the Academy offer something for teachers and students interested in the big questions of the universe—not only “Are we alone?”, but also “What does a planet with life look like?” His work and his answers to these questions traverse the historical divisions between physics, biology, and engineering.

In addition to describing the recent redefinition of planetary bodies in our solar system, he explained his use of adaptive optics (AO) to improve spectroscopy. The improvements to AO, which are technologies that decrease effects of wavefront distortion introduced when light travels through our inhomogeneous atmosphere, allow Oppenheimer a better, clearer picture of the radiating energy from planets and stars.

A Biologically Active Planet

That better picture has allowed scientists like Oppenheimer to predict what a biologically active planet would look like, specifically what chemical changes biology effects on a planet. Through improved spectroscopy, we can see that a biologically active planet will have different ratios of methane, carbon dioxide, carbon monoxide, and oxygen compared to a biologically inactive planet.

The combination of big, philosophical questions about the nature of the universe with a rich thought experiment about how life changes a planet makes Oppenheimer’s work an enticing topic for educators. His talk not only highlights a new and exciting interdisciplinary science but also clearly outlines the process by which he and other scientists combine experimental design, philosophy, and engineering to conceive, test, and refine their ideas.

Also read: The Crucial Need for Ethics in Space Exploration

Cooking for Geeks: Chemistry from the Kitchen

Fresh baked cookies getting pulled out of the oven.

Do you know about the chemical and physical process that occur when cookies are baked in a toaster oven? Engineer-turned-cookbook-author Jeff Potter explores the chemistry of the kitchen in his new book.

Published November 8, 2010

By Adrienne J. Burke

Image courtesy of Pixel-Shot via stock.adobe.com.

On November 1, 2010, cookbook author, software engineer, and self-proclaimed geek Jeff Potter visited The New York Academy of Sciences (the Academy) to talk about how to teach chemistry from the kitchen. From the work of food scientists such as Harold McGee to the urban gardening movement, teachers have plenty of ways to use cooking, food, and nutrition as a theme in the classroom. Riding the wave of this interest and excitement, Potter’s talk called Cooking for Geeks: Chemistry from the Kitchen provided teachers with another way to use a hacker’s thirst for unrestricted inquiry coupled with a scientific spirit and an enthusiasm for cooking to approach inquiry and learning in their lessons.

Geeks, and Jeff wears that mantle proudly, are defined by their curiosity and desire to take things apart, see what’s under the surface, and find out how action causes reaction. Hackers, geeks in their own way, take this one step further and adapt everyday tools to carry out these investigations. For teachers, following this model means taking easy-to-find tools such as kitchen thermometers and using them to collect data about the world.

Baking Cookies…in a Toaster Oven

For example, Potter queried what could be learned from making cookies in the classroom using a toaster oven. What we find, he notes, is that for every observable change in the cookie (flattening, rising, and browning) there is a chemical or physical process that can be explored by following the temperature of the cookie. Some physical changes, such as the melting of sugar or the boiling of water are great opportunities to discuss phase changes while others, such as caramelization and the Maillard reaction, are chemical changes that can lead to lessons about atomic structures or bonding. All of these processes happen at specific temperature points or over specific ranges that can be monitored with household instruments.

Potter continued with the temperature theme by telling the audience how to “hack” a sous vide pressure cooker. While many teachers may not be interested in actually “hacking” a pressure cooker for their class, he uses the cooking technique of sous vide (a low temperature poaching method) to discuss the connection between how proteins denature with heat and how foods taste as a result of this process. To illustrate this point, he looked at why most people prefer their steak cooked medium–rare.

At this temperature some proteins, myosin molecules in particular, have denatured while actin molecules have not, and as Potter pointed out, “denatured myosin equals yummy, denatured actin equals yucky.” By cooking steak, eggs, or fish sous vide, one can control exactly at what temperature the food is cooked, and thus, what proteins get denatured.

Jeff Potter is the author of Cooking for Geeks: Real Science, Great Hacks, Good Food. His background is in computer science, and he credits cooking with saving his sanity.

Also read: Exploring the Science of Haute Cuisine