Nine outstanding scientists from six U.K. academic institutions receive a total of $480,000.
Published December 8, 2017
By Marie Gentile and Richard Birchard
The New York Academy of Sciences and the Blavatnik Family Foundation announced the first Honorees of the Blavatnik Awards in the United Kingdom.
Three Laureates, in the categories of Life Sciences, Physical Sciences & Engineering, and Chemistry, will each receive an unrestricted prize of $100,000. In addition, two Finalists in each category will each receive an unrestricted prize of $30,000. To date, the Blavatnik Awards in the U.K. are the largest unrestricted cash awards available exclusively to young scientists.
The Blavatnik Awards, administered by the New York Academy of Sciences, were established by the Blavatnik Family Foundation in 2007. The awards honor and support exceptional early-career scientists and engineers under the age of 42 across the United States. In 2017, the Awards were launched in the U.K. and Israel. This recognized the first cohort of international Blavatnik Award recipients. To date, the Blavatnik Awards have conferred prizes totaling U.S. $5 million, honoring 220 outstanding young scientists and engineers.
In this inaugural year of the Blavatnik Awards in the U.K., 124 nominations were received from 67 academic and research institutions across England, Scotland, Wales, and Northern Ireland. A distinguished jury of leading senior scientists and engineers selected the Laureates and Finalists. The 2018 Laureates are:
These inaugural Blavatnik Awards Laureates and Finalists in the U.K. will be honored at a gala dinner and ceremony at London’s Victoria and Albert Museum on March 7, 2018. In addition, the Award recipients will be invited to attend the annual Blavatnik Science Symposium at the New York Academy of Sciences this summer, which is an opportunity for former and current Blavatnik Awardees to exchange ideas and build cross-disciplinary research collaborations.
The Blavatnik U.K. honorees will become members of the Blavatnik Science Scholars community, currently comprising over 220 Blavatnik Award honorees from the decade-old U.S. program and three inaugural 2018 Laureates from Israel. Honorees will also receive Membership to The New York Academy of Sciences.
As the Academy approaches its third century, we asked our members about the scientific discoveries they think might be made in the next 100 years.
Published October 1, 2017
By Marie Gentile and Robert Birchard
As The New York Academy of Sciences approaches its third century, we started thinking about the scientific discoveries that might be made in the next 100 years.
So, we invited some of our most extraordinary young and senior scientist members, to offer their thoughts about what they believe could be the next generation of discoveries or the greatest challenge that science or technology must solve in the decades to come. The following is a selection of the many responses we received. They have been edited to fit space restrictions. All opinions cited are those of the authors named and do not necessarily reflect those of the editorial or scientific staff of The New York Academy of Sciences. We thank all those who contributed content and hope you enjoy reading these “imaginings.”
Cures, Holograms and World Peace
I imagine we will find vaccines to prevent the onset of diseases, allowing us to extend the average human lifespan by at least 20 years. We will be able to reverse global warming and secure the future of the planet. New modes of terrestrial transportation will be invented that will allow us to travel many times the speeds we are currently accustomed to.
People and companies will produce their own electricity using reusable energy sources, making power plants and the use of fossil fuels obsolete. Space travel will become a common mode of transport, allowing us to travel to places such as colonies on solar planets, and planetary moons. Quantum computing will make computers so powerful and network connectivity so fast that a small data center will be enough to serve the needs of all humanity. Television and phones will become obsolete and holography will replace them. Sense of touch and smell will further complement this technology, making it as real as the physical world.
“Lyf-Fi”
We can’t imagine being without “Wi-Fi connectivity” — our need for information, communication and entertainment makes us dependent on the internet and the technology to access it. We also need plants to promote life. Imagine how incredibly accessible and lush our world would be if we could manage to genetically engineer each of the millions of plant species to give off Wi-Fi. The economic and technological advancements would be huge. Regardless of the scientific credibility of this idea, I strongly believe that our future generations will embrace this innovation.
A Physical Internet and the Fifth Mode of Transport
Pipenet is a project started 15 years ago by researchers at CIRIAF-University of Perugia (Italy) proposing an innovative vision of a new transportation system. It consists of a low-cost, environmentally sustainable network of pipes with linear electrical frictionless engines powered by renewable energy sources where encapsulated goods are transported at a velocity >1500 km/h with a transportation capability equal to 1 ton/sec (see ciriaf.it/pipenet). This creates a physical internet consisting of a real network where products can be quickly transported from one location to another in real time. The last km of delivery can be implemented by drones.
Several Possible Futures
George Church
Humans are possibly the only species that can comprehend events 13.8 billion years ago and 100 trillion years from now — and successfully execute multi-century plans. Since my group works on transformative technologies (genome reading and writing, aging reversal, mirror life, molecular computing, synthetic neurobiology and immunology), we might be able to see possible futures (emphatically plural) a bit earlier than most people — and hence have a responsibility to discuss, far in advance, potential extreme outcomes (mixtures of positive and negative).
Next-generation sequencing arrived in six years, not the Moore’s law estimate of six decades. If all transtechs above are similarly super-exponential, and if trends toward non-violence and caring continue, then we may see an end to poverty, physical and mental disease and significantly augmented thought and compassion. Like our recently vast spectrum of physical and cultural artifacts, neural diversity may expand — de-pathologized and embraced — far exceeding current imagination. If the universe beyond earth seems uninhabited, we may seek sufficient practical understanding of our divergent goals, dignities and ethics, that we can send these as compact physical packages at relativistic speeds to other star systems (and capable of replication and phoning home).
This may be our Darwinian response to existence crises that could destroy all life on earth. We may experiment with small, intentionally isolated and self-sufficient colonies on earth — in stark contrast to our growing economic and cultural interdependence. Instead of issues of population explosion or excess-leisure, we may be collectively tackling the greatest challenge ever — survival — at a cosmic scale of time and space.
Creating Yonger Versions of Ourselves
William Haseltine
Our lives began with the first living form that arose 4 billion years ago, a single celled microorganism that appeared when our planet was still being shaped by bombardment from the heavens. Inheritance is a fundamental characteristic of life. The DNA molecule in that primordial organism has been replicating itself with variation for more than 3.5 billion years. As we look to the future, a central question persists: can we tie the transient existence of our individual lives to the immortality of the DNA molecule that defines us?
The promise of regenerative medicine is developing more slowly than I had hoped 18 years ago when I first coined the term. We know there are substances in a fertilized egg that can turn back the genetic clock. Additionally, we know how to take newly created embryo like cells and develop them into adult tissues.
We are close to producing cells that can restore muscle function to damaged hearts and create neurons that can replace parts of the brain. What we lack is the medical science that allows these fresh cells to be systematically implanted into our tissues. An enormous amount of work remains to be done to understand the signals that direct a specific tissue to become what it is. In this we are underinvested.
The most powerful medicine is a younger form of oneself. Any country could become a world leader in this field, with proper investment in the fusion of cell biology and transplantation medicine. Whether it happens in my lifetime, or my children’s lifetime, or my grandchildren’s lifetime, this is a promise science can fulfill. When it does, it will be a gift to the future of mankind.
Space Elevators, Thought to Text and Energy-based Paint
With recent interest in space tourism, I think it’s worth speculating about the creation of “space elevators” — structures that will allow rockets to launch at the edge of the atmosphere, rather than from the surface. While the concept may seem far-fetched, rapid developments in space-based civil and mechanical engineering, have sparked numerous innovations.
I’m also excited about brain-computer interfacing, especially noninvasive devices that allow users to accurately detect activity within their brain. Companies like Neurolink and Facebook have been investing in research to enhance the speed of translating thought to text, and while the technology is developing, research is already being done such as OpenBCI’s open-sourced toolkit and the Muse headband.
Finally, the development of new renewable energy sources — from paint-on solar cells to microgrids — are soon going to provide a democratization of energy to all corners of the world. It’s incredibly exciting to be living in a generation where we’ll have the opportunity to contribute to such innovative research!
Shaking Hands Across a Virtual Divide
Humfrey Kimanya
In the next century there will be unimaginable advancements in communication to link people all over the world. For example, video conferences where we can actually communicate tangibly. A person in Tanzania in an online meeting will be able to shake hands with another person in Belgium!
Now, the questions are: “Is it really possible? How does this happen? Won’t that violate the laws of physics and nature?” Currently by wearing special gadgets we can simulate the feeling of shaking hands with another person through a computer, much like video game technology.
But in the future, people will be able to put their hands through the computer screen to shake hands with someone. This will mean that the relativity theory of Einstein, and others, will have to be rephrased or at least obeyed in the technological sense. It is also possible that, by then, people will not only physically communicate with each other using computers but also travel in computers! In simple terms, teleportation, a puzzle that researchers can surely solve in this century.
Greater Human Collaboration with Other Species
Forecasting across 100 years becomes more manageable when seen in stages of successive possibilities. I imagine three such stages of development:
By 2050: Each person will be able to scientifically understand himself/herself from a unique attribute mix point of view. Individuals will use available analytical tools and personal knowledge, to determine the meaning of their respective combinations of facts. Data used in determining this meaning will include the personal genome (a recent entity), the Myers-Briggs Type Indicator (MBTI, a 100-year-old instrument based on a theory of Carl Jung), and unlimited other measures. People will also sometimes interpret data for their dependents to help make needed decisions in health and other fields.
By 2085: This Personal Science-based information and activities opens the door for individuals to begin to understand members of other species in terms of their own defining attributes and to move toward collaborative behavior where appropriate. This will be the Age of Interspecies Personal Encounter and will engender greater compassion toward other species. We don’t need aliens arriving or communicating with us in order to experience a interspecies moment.
By 2120: This experience will lead researchers to raise a fundamental question — can the chemistry and behavior of animals in the wild be altered so that animals will not eat other animals and yet thrive and reach their Aristotelian actualization? Experiments will be done on a small scale and begin to influence general thinking.
Early Mars Settlers May Not Necessarily Be Human
Sir Martin Rees
Robotic and AI advances are eroding the need for humans to venture into space. Nonetheless, I hope people will follow the robots, though it will be as risk-seeking adventurers rather than for practical goals. The most promising developments are spearheaded by private companies: they can tolerate higher risks than a western government could impose on publicly-funded civilian astronauts, at a lower cost than NASA or ESA.
By 2100 thrill-seekers in the mold of (say) Felix Baumgartner, who broke the sound barrier in free fall from a high-altitude balloon, may establish “bases” on Mars, or maybe on asteroids. Elon Musk of Space-X has said he wants to die on Mars, but not on impact. But don’t expect a mass emigration from Earth. It’s a delusion to think that space offers an escape from Earth’s problems. Nowhere in our Solar System offers an environment even as clement as the Antarctic or the top of Everest. There’s no “Planet B” for ordinary risk-averse people.
But we (and our terrestrial progeny) should cheer on the brave space adventurers. Precisely because space is an inherently hostile environment for humans, these pioneers will have far more incentive than us on Earth to re-design themselves. They’ll harness the super-powerful genetic and cyborg technology that will be developed in coming decades. These techniques will be heavily regulated on Earth, but the Martians will be far beyond the clutches of the regulators.
So it’s these robotic spacefarers, not those of us comfortably adapted to life on Earth, who will spearhead the post-human era. Moreover, if post-humans make the transition to fully inorganic intelligences, they won’t need an atmosphere. And they may prefer zero g — especially for constructing massive artifacts. So it’s in deep space that non-biological “brains” may develop powers that humans can’t even imagine.
Uncovering the Depths of Earth’s Final Frontier
Emily Lau
Humankind has traveled through treacherous currents, the driest deserts, howling winds and precarious storms to explore our world. However, there is one significant portion yet to be fully explored — the deep sea. The oceans house mystically magical organisms: bioluminescent organisms, venomous snails, shocking jellyfish, brilliantly colored fish, large mammals and clever cephalopods to name a few.
Organisms in the depths of the ocean are subjected to extreme conditions such as intense pressure and frigid temperatures. Deep sea ecological research explains how organisms have adapted to these extremes and has many implications in the improvement of conservation biology and the understanding of evolutionary biology.
Current scientific advancements and production of deep-sea vessels have allowed for limited deep sea exploration. It would be wonderful, in the upcoming years, for both scientists and the public to gain knowledge about the biodiversity housed thousands of meters below the Earth’s surface. The advancement of deep sea exploration relays the passion and natural curiosity of humans in the preservation of our wondrous planet.
More Women in STEM
Sarah Olson
At this year’s New York Academy of Sciences’ Global STEM Alliance Summit 2017, attendees witnessed the future STEM workforce — bright young women working with their peers to engineer solutions for some of the world’s biggest problems, including clean water and sustainable energy. These young women are part of the next generation of scientists, who will change the world with their research.
Developments in technology are enabling us to make discoveries in previously inaccessible places, from the depths of the ocean to the furthest reaches of space. While we cannot predict that we will find life on other planets or how many species are still left to discover, there is one thing that we do know: that women in STEM will continue to change the world through their research.
Broccoli by Bach, Melons by Mozart, and Apricots by Abba
How and why plants communicate bio-acoustically is not well understood nor documented, however it is known that they do so to relay information about the conditions of their environment (such as drought and predator threat) to each other. My work utilizes the research of evolutionary biologist Monica Gagliano, at the University of Western Australia, who studies their communication and records and analyzes both the sounds they make and their responses to sounds they hear or feel through vibrations. Scientific studies have documented that plants grow and bend specifically toward 220 hz sound, which can also be used in agriculture as a virtual fertilizer.
I plan to create a 3D animated interactive art installation incorporating holographic flower imagery, a bio-acoustic soundscape (using a laser doppler vibrometer or acoustic camera) and dancers (who become the flowers and ‘vibrate’ in tune with each other), with enhanced viewing via Microsoft’s wearable holographic headsets. I imagine that this blending of music and the arts with botanical science will enable greater yields of food sources that we will need to feed a hungry world as well as creating a whole new art form!
The Coming Revolution in Smart Electric Power
Yu Zhang
The way we generate and consume electricity in the early 22nd century will look a lot different than the way we do it in the early 21st century. Advanced sensor capabilities and smart internet-capable devices along with high-penetration renewable energy will transform the nation’s aging power infrastructure. This is starting to happen with power companies hooking up their networks to the burgeoning “internet of things.”
But that is just a precursor to a vastly more energy-efficient smart grid, where it will be common to find homes that generate much of their own power. Individual houses will have photovoltaic devices and small storage units so every home becomes an energy “prosumer,” producing electricity and selling it back to the grid. Those carbon-free and zero-energy homes will form networked microgrids, which feature a higher level of resilience if there’s ever a blackout in the main grid, they’ll be unaffected.
Power systems will be interconnected via the internet to allow consumers to optimize their electricity consumption. Dishwashers, refrigerators and electric vehicles will be automatically adjusted to real-time pricing signals. This will not only reduce energy bills, but also will significantly improve the efficiency and reliability of the whole grid.
You can be among this group of changemakers. Get involved with The New York Academy of Sciences today!
The 2017 Blavatnik Awards for Young Scientists Laureates exemplify the kind of fearless thinking that can make revolutionary ideas become reality.
Published October 1, 2017
By Hallie Kapner
As physicist Niels Bohr (among others) has said: “Prediction is very difficult, especially if it’s about the future.”
Just ten years ago, it would have been a stretch for even the most optimistic prognosticator to predict that the iPhone, then a newborn technology, would be in one billion hands or that the human genome could be sequenced affordably in 24 hours. These examples of the dizzying pace of progress are good reminders that while attempts to peer into the future of science and technology are essential for growth and inspiration, reality sometimes exceeds the wildest visions.
The 2017 winners of the Blavatnik National Awards for Young Scientists, materials scientist Yi Cui, chemist Melanie Sanford, and bioengineer Feng Zhang, are no strangers to vision. Chosen from a pool of more than 300 nominees from universities around the country, this year’s Laureates exemplify the kind of fearless thinking that upends norms and breaks boundaries, ultimately bringing revolutionary ideas and advances into reality.
Asking any of them to discuss their day-to-day research would provide a fascinating peek into some of the most cutting-edge work in their respective fields, yet just as intriguing are their thoughts on the future. When asked to fast-forward ten or twenty years to discuss what’s next in their fields, each readily dove headlong into the world to come, shedding light on achievements that are both probable and possible, then reaching further to describe potential advances that seem far-fetched today, but may be the ultimate achievements of tomorrow.
Deleting Disease
Feng Zhang
Ten years is a long time for Feng Zhang, as he recalls that the technology he helped pioneer, CRISPR-Cas9, didn’t exist a decade ago.
As Zhang, a Core Member of the Broad Institute at MIT and Harvard, talks excitedly about the rapid pace of advancement in the field of genome editing, he highlights that there’s still plenty of room for growth. Zhang was among the first to conceive of using CRISPR, an adaptive immune function native to bacteria, as a DNA-editing tool, a breakthrough that has turned the ability to quickly, cheaply, and precisely edit the genomes of plants and animals from science-fiction into an everyday occurrence.
From Zhang’s point of view, developing the tools was just the beginning — the work of the future is in refining and applying those tools to alleviate suffering and disease.
The advent of rapid, affordable genome sequencing has allowed researchers to identify many of the mutations that cause disease, which fall into two categories: monogenetic diseases, such as Huntington’s, caused by a single mutation, and polygenetic diseases, which comprise the majority of illnesses, wherein multiple mutations are implicated.
Today, most of the work being done with CRISPR targets monogenetic diseases. Even in those cases, a fix is far more complex than simply cutting and replacing.
“The major issue is that we don’t know how to repair the mutation efficiently, nor what exactly needs to be done to have a therapeutic consequence,” said Zhang. “I think we’ll develop techniques for delivering gene therapy to the right tissues, which is still a big challenge.”
Advancing CRISPR technologies
Zhang also projects a future where CRISPR technologies can be adapted to treat patients with diseases so rare that they are often overlooked by the therapeutic pipeline.
“The economics don’t work for drug companies to focus on rare diseases, but as gene editing becomes more mature, we could feasibly create individualized therapies that would circumvent the typical drug development process,” he explained.
But the ultimate CRISPR application — editing multiple genes to treat complex polygenetic diseases — remains the stuff of fantasy. Two decades from now, Zhang expects we’ll be much closer.
“Even if we have the technology to make multiple genetic changes, we don’t know enough about how multiple genes interact in disease at this point,” he said, noting that the interplay of different gene variations can produce effects we don’t fully understand. “There are variations known to protect people from HIV, but they increase susceptibility to West Nile Virus,” he said. “That’s just one example — we need a much better understanding of these connections in order to achieve these bigger goals.”
Big Ideas from the Smallest Structures
Yi Cui
For Yi Cui, professor of materials science and engineering at Stanford University, the buzzword of the future is energy.
Specifically, inexpensive, widely-available clean energy, along with new battery technologies that will transform cars and other consumer products as well as the electrical grid itself. Cui, whose research focuses on using nanoscale materials to tackle environmental and energy issues, has several breakthrough technologies to his credit — including a water filtration technology that uses electrified silver nanostructures to puncture viral and bacterial membranes, purifying water faster and more cheaply than chemical treatments, and designs for ultra-long life, low-cost batteries that may pave the way for what Cui sees as the major potential achievement of the next two decades: grid-scale energy storage.
Solar cells have become more efficient and renewable energy costs are dropping, yet energy storage remains the major hurdle for scientists, who recognize both the economic and environmental advantages of a future dominated by clean power. Continual improvements in the energy density of today’s batteries will yield rewards in the relatively near term, says Cui, who sides with experts who predict mass adoption of electric vehicles over the next 10-15 years.
“I wouldn’t be surprised if we’re seeing cars that can run 400 miles on a single charge,” he said, but the greatest gains in clean energy won’t be achieved until batteries can store enough energy to allow for the integration of solar, wind and other renewable power sources into the mainstream electrical grid. “Energy storage is the missing link,” Cui said, “and if we can solve that, it will be the most extraordinary achievement we can hope to have in this field in the next 20 or 30 years.”
The potential for nanomaterials to help mitigate the impacts of environmental pollution also looms large for Cui. As the global population grows and resource needs increase, he predicts a starring role for nanoscale structures in efforts to purify water and remediate soil pollution, and is developing a nano-driven “desalination battery,” which removes salt from seawater using less energy than reverse-osmosis, as well as air and water purification technologies that use nanostructures to capture particulates and pollutants with remarkable speed and efficiency.
The Best Molecule for the Job
Melanie Sanford
In a future envisioned by Melanie Sanford, there will be no compromise to designing molecules for some of the most important chemical tasks in the world, namely medical imaging, drug development, energy production and fields where the characteristics of a chemical reaction, or the process by which a molecule is made or utilized, can mean the difference between mediocre performance and excellence.
Sanford is making this vision a reality, developing customized approaches for the goals of various industries.
“Depending on the target for the reaction we’re developing, the dreams for the future are different,” she said.
The pharmaceutical and medical industries are two areas where Sanford believes that astonishing advances will be realized in the coming decade. Among them, the ability to customize the tracer molecules that are crucial to obtaining quality images in positron emission tomography, or PET, scans used in cancer, cardiac and brain diagnostics.
“Right now, the tracers used aren’t the best or the most appropriate, they’re the ones we can make with the limited set of reactions we have for adding a radioactive tag to a molecule,” said Sanford. “Ten or twenty years from now, the only constraint will be our imaginations — the reactions and catalysts in development now will allow us to ask, ‘What molecule do I want to make to get the best result for this application?’ and then be able to make it.”
Customization plays an equally important role in another field Sanford sees poised for transformation through the design of novel reactions — agricultural chemicals. Using reactions that yield the desired result, but do so using readily available materials with minimal energy consumption or waste production, would represent significant improvement and a major sustainability overhaul of some of the largest-scale chemical processing activities on earth.
“These syntheses are being performed at such a massive scale that waste really matters,” said Sanford.
The ability to make the best molecule for the job will be key to making Cui’s grid-scale energy storage a reality through new battery technologies. Sanford animatedly described the potential for developing new molecules to store energy, as well as tools for understanding and predicting the behavior and characteristics of those molecules.
“It’s going to be very exciting to both develop molecules with huge storage capability, but also to be able to use them to balance various needs and parameters — high storage capacity with high solubility — so we can really understand how to modify structures to yield the best performance for an application,” she said.
Zhang, Cui and Sanford harbor no delusions of ease when it comes to the dreams they’ve set forth. Rather, they greet the challenges ahead with equal measures of determination and hope.
“We have an enormous amount of work to do in the coming decades,” said Cui. “But everything we’re working towards is so important for the sustainable growth of the world and for the health and future of our children. I’m confident we can do it.”
Described by his contemporaries as a “chaos of knowledge,” a “living encyclopedia,” and a “stalking library,” first Academy President Samuel L. Mitchill dabbled in a variety of disciplines, building a unique level of scientific proficiency that was very rare at the time.
Born in North Hempstead, New York, in 1764, he had remarkably varied interests, which ranged from medicine to geology, botany and mineralogy. A farmer’s son, Mitchill exhibited great interest in the natural sciences early in life. After studying the foundations of medicine with his uncle, doctor Samuel Latham, Mitchill went to the University of Edinburgh to earn his medical degree in 1786 and then returned to New York, where he received a license to practice medicine. The route he chose, however, was far from a typical doctor’s path.
Because of his boundless thirst for knowledge, Mitchill couldn’t fully settle on pursuing any one scientific field. His contemporaries described him as a “chaos of knowledge,” a “living encyclopedia,” and a “stalking library.”
He kept dabbling in a variety of disciplines, building a unique level of scientific proficiency, which was very rare at the time. It wasn’t surprising that his wide array of interests and expertise earned him an appointment as a Chair of Natural History at Columbia University, at the age of 28. At Columbia, Mitchill’s scientific career truly flourished. He taught chemistry and botany, and expanded his work into other areas of science.
Promoting Geology, Agriculture, Chemistry
Mitchill was a prolific publisher and produced a variety of works, once again on a wide variety of topics. He prompted the geological survey of the New York State. He contributed to the development of agriculture by surveying the mineralogy of the Hudson River Valley. His chemistry studies led to improved detergents and disinfectants, and even better gunpowder. For 23 years, Mitchill served as a chief editor of the Medical Repository, one of the top scientific publications of the time.
It would only make sense then, that an erudite man like Mitchill would lay the foundation for the New York Academy of Sciences. In 1817, he organized the first meeting of the Lyceum of Natural History (the Academy’s early name), which took place at the College of Physicians and Surgeons in Lower Manhattan. Later elected as the Lyceum’s first President, Mitchill remained in that post until 1823.
Under his supervision, the Lyceum hosted lectures, preserved samples of natural artifacts, and established a library. Seven years after the Lyceum’s commencement, it began publishing The Annals of the Lyceum of Natural History of New York — one of the first American journals of natural history and science. The Annals published articles on myriad topics, from research on swallows by its Member John James Audubon, to descriptions of newly found species.
As the years progressed, the organization started by Mitchill continued to grow, adding more activities to its list. New York State commissioned the Lyceum to do a survey of its mineralogy, botany, and zoology. The Lyceum also became instrumental in launching organizations dedicated to scientific research and literacy, including New York University in 1831, and the Museum of Natural History in 1868.
Science and Politics
Like many other great scholars who sought to educate societies about science, Mitchill worked to emphasize the importance of scientific progress in the American legislature and politics. In 1801, he resigned his Columbia appointment and took a seat in the U.S. House of Representatives. Later, he served a term in the Senate, and then once again in the House. He was an advocate of quarantine laws, and an avid proponent of the Library of Congress.
Mitchill was also instrumental in the creation of educational institutions including Rutgers Medical College, where he served as Vice President during the college’s first four years. Despite being preoccupied with his political efforts and other endeavors, Mitchill never stopped working on his scientific pursuits, and remained very productive in his research publications throughout his life.
As historian Alan Aberbach once wrote, “To Mitchill it was axiomatic that with diligence and empirical practices, developing systematically and organically, one could come to grips with and resolve the historical plagues of mankind’s ills.”
A look inside an innovative program that encourages new business start-ups.
Published May 1, 2017
By Carina Storrs, PhD
Jessica Akemi of Cornell presents on plans to commercialize CO2 conversion technologies at the NEXUS-NY demo day in Rochester, NY. Photo courtesy of doerrphoto.com
New York State policy makers and business leaders looking to encourage new business start-ups should take a look at an innovative program developed by New York State Energy Research & Development Authority (NYSERDA), an Academy program partner for nearly a decade.
NYSERDA’s mission is to identify next generation clean energy technology, and bring the best of those ideas out of the lab and into the marketplace through Proof of Concept Centers (POCC). POCCs work with research teams that have promising ideas, inventions and intellectual property. The teams gain access to business expertise that provides a market validation process to determine whether they are ready to create a viable business model.
Jeff Peterson, NYSERDA’s Program Manager, sees this as a viable way to encourage new business start-ups.
“Visualize a funnel. At the wide end of the funnel you have a lot of people with interesting ideas for prospective business enterprises. At the small end of the funnel you have a commercially viable scalable business,” he said. “The POCC programs are designed to help entrepreneurs with ideas around clean energy technology negotiate the funnel to success.”
Establishing Proof of Concept Centers
Four years ago, NYSERDA selected three outstanding groups and awarded them funding to start POCCs: a Columbia University-led group that includes Cornell Tech, Stony Brook University and Brookhaven National Laboratory; a joint NYU and CUNY group; and High Tech Rochester, a nonprofit business incubator.
The first two groups operate as a single POCC known as PowerBridgeNY (PBNY), while the High Tech Rochester POCC is called NEXUS-NY. The inclusion of NEXUS-NY helps cast an even wider net in the search for potentially game changing ideas. Although POCCs tend to focus on academic research Peterson said, “you hate to shut the door on people when they have an interesting idea, so that’s where the NEXUS-NY program came into play.”
From left to right: Xiaozheng, Co-Principal Investigator Scott Banta, Co-Principal Investigator Alan West, Entrepreneurial Lead Tim Kernan
An Enviable Network of Innovation
Research universities have always been at the center of new technologies and New York State has one of the most enviable networks of innovation centers in the country. POCCs have been centers of innovations for several years. Similar to PBNY and NEXUS-NY, their aim has been to fund groups with promising early-stage research and advice about how to develop their research for commercialization. All of these efforts support Governor Andrew M. Cuomo’s energy goals to have 50 percent of the state’s energy come from renewable resources by 2030.
“Unlike the NYSERDA POCCs, many of these centers promote a range of technologies rather than focusing specifically on clean energy. However, clean energy technology, as compared with software technology for example, is particularly poised to benefit from the POCC model,” Peterson said.
For one, it is relatively capital inefficient to build and test multiple iterations of complex clean energy hardware, such as a transformer or wind turbine, requiring both more upfront market research and funding. In addition, the market for clean energy technology is constantly evolving so it may be more difficult to project the demand for a certain type of product.
To date, 52 teams have participated in the first three cycles of the program. These teams have gone on to start nearly 30 companies between them, many of which have also attracted private investment as well as grant funding from competitive state and federal programs.
Potential for Commercialization
During their time in the POCC, the teams tap into myriad business resources that many academic groups and groups conducting early-stage research, find critical for commercialization. As part of the application process for PBNY, teams participate in a two-day boot camp, during which they hear about lessons learned from previous PBNY classes.
They pitch their idea to a panel of judges from industry who provide guidance and feedback. Once teams are accepted into PBNY, they meet regularly with an assigned industry mentor, who helps them prepare to talk with potential customers, many of whom they connect with through PBNY networking events. In addition, the teams have monthly meetings with PBNY leadership to determine how well they are meeting the business and technical milestones they established at the beginning of the program.
A Two-Phase Process
The NEXUS-NY program involves two phases: In the first 12-week phase, teams make the case to the POCC leadership that their technology lends itself to creating a startup. If they advance, they spend the rest of the program working to demonstrate that their technology works in a way that is useful to potential customers, such as through building prototypes and developing investor presentations. Throughout the program, participants meet weekly with teaching teams, either virtually or in person, which help train them to have conversations with potential customers. The mentor network at NEXUS-NY is invaluable for introducing teams to key industry players.
Both NEXUS-NY and PBNY award research money to teams accepted into their program, but by the time they finish the program, teams usually say the most helpful part was everything else.
Christopher Schauerman, co-director of the Battery Prototyping Center at Rochester Institute of Technology, is part of a NEXUS-NY team that formed a company, called Cellec, for its technology, which involves using nanomaterials to build smaller and more energy dense batteries. The batteries have potential applications in drones and satellites and the Cellec team, which graduated last year, already has contracts lined up with customers in the aerospace and defense community.
“Through the NEXUS-NY program, we were able to talk to enough customers and get enough customer feedback that motivated us to form a company,” Schauerman said.
The Impact of the Program
For some teams, feedback from potential investors led them to substantially pivot their plan. Tim Kernan, GM of Ironic Chemicals and his partners at Columbia University were accepted into the first cohort of PBNY with the plan to use their genetically engineered bacteria to convert solar energy to liquid fuel. The negative response from investors, who questioned the need for this technology because fuel was so cheap, combined with input from a PBNY business mentor, led the team to instead develop the bacteria to break down sulfide waste from copper mining.
“Academics are not always experienced or familiar with the commercialization process,” Kernan said about the company he and his partners formed based on their technology. “Up until the existence of PBNY and similar types of centers, there was no support, you had to figure it out on your own or be lucky enough to have a technology that a company already wanted to buy. But with clean energy you’re creating technology that doesn’t have a market yet,” Kernan said.
Ironic Chemicals currently has a partner in the mining industry and a federal small business grant that will hopefully allow them to start testing bacterial tank reactors at a mining site by early 2018.
A Strong Advisory Board
Another important component to the program is the advisory board organized by the Academy. National thought leaders from academia, government and industry meet regularly to provide strategic advice to the POCC leadership.
“After a relatively short time, there have been many interesting success stories. Many companies have been formed. Some have raised private capital. A few have sold products. Even more have been awarded additional grant funding,” Peterson said. “The truly exciting part of the program, however, is that many of the research teams have become excited about entrepreneurship. NYSERDA committed to funding the POCCs for a five-year term. The hope is that the program will gain enough momentum and interest that grant and investment money will step in and NYSERDA and state funds would not be necessary at the scale they are at now.”
Founded in 1817 as the “Lyceum of Natural History in the City of New York,” by a small group of science enthusiasts, led by Samuel Latham Mitchill, a polymath and prominent politician who represented New York in the U.S. Congress, determined to create an organization that anyone interested in natural science could join in order to learn from experts, and that provided a venue for public consumption of scientific ideas and advances of the time.
For the next 100 years, the trials and tribulations of the Academy were in many respects the trials and tribulations of progress of science in New York and other states of the new American republic. In March 1817, James Monroe became the fifth American president. That same year he was elected an honorary member of the Lyceum, along with the third American president, Thomas Jefferson.
The intentionally anti-patrician nature of the Lyceum not only distinguished it from other institutions of the day, it served as the basis for a new type of democratic institution that later was instrumental in the progress of science, especially in the New York City area, though this was also felt throughout New York State and beyond.
On the national scene, Philadelphia, originally owing to its centrality as the first American capital and birthplace of major figures in politics and science—e.g., Benjamin Franklin—was home to the first science societies in the nascent country, although with the exception of Franklin’s Academy of Natural History the societies were aristocratic and elitist. They were institutions largely, if not exclusively, for men of wealth who were not themselves scientists; nor probably even much interested in science. Membership was a symbol of status, indicating, among other things, that a person had the financial means to support these 19th century social clubs.
Even by name—Lyceum: an institution for popular education providing discussions, lectures, concerts, etc.—the first incarnation of the Academy was fundamentally different from other societies. Its raison d’être was not social climbing and show, but the dissemination of science, and bringing people who were keenly interested in science, together.
This fundamental democratic principle determined the course of the Academy’s history, and with it the development of key institutions of science and learning in New York City today, including Central Park, the American Museum of Natural History, the New York Botanical Garden and New York University. It was by inclusion of people on the basis of only their interest in science that the Academy could bring together so many different stakeholders—indeed so many key individuals at just the right moments—to influence, if not forge the development of many New York City institutions.
The founding meeting of the Academy, then the Lyceum, occurred on January 29, 1817. To tell the history of the Academy’s accomplishments since then is to tell the history of science in New York State and America, and beyond. It is the history of an institution, but more importantly of the tens of thousands of individuals who have been Academy Members since 1817, from around the globe and from many diverse institutions, cultures and walks of life.
Indeed the history of the Academy would not have been possible without the devotion, energy and creativity of its Members. This collective engagement—today we refer to this as the Academy’s network—has enabled and driven fundamental changes in the landscape of science and science-based institutions in New York City and throughout the world. This is history worth telling, and re-telling.
Two centuries later, on January 29 2017, the Academy unveiled a permanent 200th Anniversary Exhibition in the lobby of its headquarters at 7 World Trade Center in New York City (see photos below). The folded timeline insert in this issue of the magazine provides a concise history of key Academy events, members and accomplishments since 1817. A prominent feature of the physical exhibition is a 17-foot-long timeline with images and text that tells the story of some of the enormous challenges and successes over the Academy’s 200 years.
In addition, as part of the 200th anniversary celebration, the Academy is publishing a revised edition of a critically acclaimed history of the Academy and of science in New York City and the early United States, Knowledge, Culture, and Science in the Metropolis: The New York Academy of Sciences, 1817–2017 by historian and professor Simon Baatz (John Jay College).
Originally published as special issue of Annals (Ann NY Acad Sci 584: 1–269) in 1990, professor Baatz’s book provides an, “engrossing account of the role of the sciences within the great American metropolis”… “this masterly account of science in its social context will be of the greatest interest to everyone who cares about New York, about the growth of knowledge, and about the importance of voluntary associations in our national life.” The revised edition, published in January 2017, contains a new chapter on the Academy’s history from 1970 to 2017.
An even earlier account, A History of the New York Academy of Sciences, formerly the Lyceum of Natural History, published in 1887 by Herman Le Roy Fairchild, is also available in electronic form by contacting the Academy at annals@nyas.org. Fairchild’s account is a detailed discussion of many facets of the Lyceum’s early days, including biographical sketches of many of the important founders, lists of all of the first Lyceum officers and administrators, dates and addresses of locations of the Academy during its early peripatetic days, copies of the original constitution, by-laws and other legal documents.
Finally, a very brief history, “The Founding of the Lyceum of Nature History,” by historian Kenneth R. Nodyne, was published in 1970 (Ann NY Acad Sci 172: 141–149).
Some Prominent Members of the Academy
From its inception, the Academy has been a member-driven organization. And while it was a democratic organization that welcomed anyone, the Academy, for its first 100 years or so, proposed and voted on bestowing memberships.
As specified in the original constitution of 1817, admittance to the Lyceum was by three categories of membership. Resident members were from NYC and “its immediate vicinity” and thus could take part in Academy meetings, while Corresponding members, largely on account of travel times in the early 19th century—it took a day and a half to travel to Boston!—were less involved; Honorary members were selected on the basis of “attainment in Natural History,” no matter where they resided.
Categories of membership changed over the years. In the 1980s there were eight: Active, Life, Student, Junior, Institutional, Certificate, Honorary Life and Fellows. The total number of members had reached its highest, 48,000 from all 50 states and over 80 countries around the world. This membership apogee was in large part the result of two factors. One was the enormous influence of the Academy’s executive director from 1935 to 1965, Eunice Miner, whose zeal and “stubbornness” increased membership from 750 in 1938 to over 25,000 by 1967! The other influence was a membership policy in the 1980s of mailing out membership certificates to people worldwide.
Today’s Academy membership of 20,000 is composed of Professional, Student and Postdoctoral, Supporting and Patron, and—continuing a long tradition—Honorary Members. Over the course of our history there have been well over 200 Honorary Members, including 110 Nobel Laureates. Below are profiles of just a few of the Honorary Members.
Lord Kelvin (1824–1907) Elected Honorary Member 1876
William Thomson, 1st Baron Kelvin, a Scots-Irish mathematical physicist and engineer who did important work on electricity and thermodynamics. Absolute temperatures are stated in units of Kelvin in his honor.
Louis Pasteur (1822–1895) Elected Honorary Member 1889
A French chemist and microbiologist known worldwide for his work on understanding vaccination, microbial fermentation, and pasteurization. He was director of the Pasteur Institute, established in 1887, until his death. He was made a Chevalier of the Legion of Honour in 1853, promoted to Commander in 1868, to Grand Officer in 1878 and made a Grand Cross of the Legion of Honor—one of only 75 in all of France.
Niels Bohr (1885–1962) Elected Honorary Member 1958
A Danish physicist who won the Nobel Prize in Physics in 1922 for making fundamental contributions to the studies of atomic structure and quantum theory. He spent much of his life and worked in Denmark, where he founded the Institute of Theoretical Physics at the University of Copenhagen.
Barbara McClintock (1902–1992) Elected Honorary Member 1985
An American cytogeneticist who won the Nobel Prize in Physiology or Medicine in 1983 for her discovery of genetic transposition. Her work concentrated on studies of maize, for which she developed techniques for visualizing the chromosomes; she produced the first genetic map for maize and demonstrated the important roles of telomeres and centromeres. McClintock spent her entire professional career in her own laboratory at Cold Spring Harbor Laboratory.
Rosalyn S. Yalow (1921–2011) Elected Honorary Member 2006
Born in New York City, Yalow was a medical physicist and co-winner of the Nobel Prize in Physiology or Medicine for the development of the radioimmunoassay (RIA), an in vitro technique used to measure concentrations of immune proteins called antigens. This revolutionary technique helped to marshal in the modern era of immunological research. Yalow also won the prestigious Albert Lasker Award for Basic Medical Research (1976) and the National Medal of Science (1988).
Anthropologist Margaret Mead brought attention to cultural perspectives on scientific change.
Published January 1, 2017
By Marie Gentile and Robert Birchard
“The Academy has stood for new ideas, for the adventurous and experimental,” said Margaret Mead, at a celebration of the Academy’s 150th anniversary in 1967.
“Adventurous and experimental” well describes Mead’s own career. As a new PhD in the 1920s, she carried out pathbreaking—and controversial—anthropological fieldwork on childhood and adolescence among indigenous South Pacific peoples. She later turned her attention to the context of youth in her own society, famously commenting on the “generation gap” of the late 1960s.
An outspoken public intellectual, Mead became, during her lifetime, America’s most famous anthropologist. And she used her decades-long association with the Academy to bring attention to cultural perspectives on scientific change in an era that spanned the development of nuclear weapons to the energy crisis of the 1970s.
Her professional home was in New York City, at the American Museum of Natural History (AMNH), where she became Curator of Ethnology—and where the Academy’s headquarters occupied two rooms during the 1930s and 1940s.
It’s possible that Eunice Thomas Miner, the Academy’s Executive Director at the time, recruited Mead—Miner initiated an unprecedented Membership drive in the late 1930s. Both women held the title of Research Assistant at AMNH, where they became friends as well as colleagues.
For the next 40 years, Mead’s perspective as an anthropologist shaped Academy affairs. She understood science as a product of culture. In Academy forums and elsewhere, she compared science in different national contexts, professional and public understanding of science, and perception of science by young people and older generations.
Her many articles and talks on the implications of these different perspectives—whether for nuclear war, space exploration, science education, scientific literacy of the public, and other issues—converged with a growing concern within the Academy about the place of science in society.
Contributions to the Academy
Throughout this time, Mead contributed research to Annals, organized meetings, and served the Academy in official capacities, at different times as Chair of the Anthropology section, Vice President of the Scientific Council, and Vice President of the Academy.
The Academy first provided a platform for Mead’s research in 1942, when it published her book with Gregory Bateson, Balinese Character: A Photographic Analysis. Carried out from 1936 to 1938, Bateson and Mead’s fieldwork in Bali made unprecedented use of photography and film, generating some 25,000 still images.
Earlier anthropologists had taken photographs, but this project was the first to do so on such a large scale, and also the first to present the visual record as the primary scientific evidence with written documentation secondary. The book helped launch the new field of visual anthropology and it remains a classic today.
As she became more involved with the Academy, Mead valued its ability to convene experts in “symposia on the growing edge of knowledge,” as she put it—and “the structure it provided for creative interchange among the sciences.”
Considering the Cultural Implications
In October of 1957, one of these frontiers was launching earth-orbiting satellites. Mead later recalled that the announcement of the Soviet Sputnik launch came only two hours after she had mailed invitations to an Academy conference on the cultural implications of “man in space.” The conference was held later the same month, and the proceedings were published in Annals the next year.
By the 1970s, when the cultural relevance of science came more and more into public view, Mead returned to theme that she often explored—the distance between specialists and non-specialists; between scientists and the public. To her thinking, improving science education at all levels was vital to bridging this gap and ensuring both scientific advances and informed public debate and decision-making.
These and many other issues that Mead tackled in the 1960s and 1970s remain relevant to the Academy today, including childhood nutrition and the challenges faced by women in science. She was, “Always helpful to this Academy,” in the words of a 1973 citation praising her as an Academy Governor, and could “be counted on for sound advice based on high principles.”
Patients with life-threatening illnesses face challenges in accessing potential therapies at the cutting-edge of research and development, which have not yet been proven in a clinical trial. Some pharmaceutical companies produce and provide medicines on a case-by-case basis through expanded access or “compassionate use” programs. The tension among principles of fairness, equity, and compassion are explored in this podcast through a case study about a social media campaign led to an expedited clinical trial for an investigative antiviral medicine. Guests will explore the provocative and emotional stories of patients, family members, advocates, researchers, physicians, and the regulators charged with keeping medicines in the marketplace safe and effective.
This podcast was a collaboration between The Division of Medical Ethics at NYU School of Medicine and The New York Academy of Sciences.
Modern physics and its leading theories have been remarkably successful in describing the history of our universe, and large-scale experiments, such as the Large Hadron Collider, are continuously producing new data that extend our knowledge of the world. Nevertheless, our understanding of some physical concepts that seek to explain our universe—dark matter and dark energy, quantum gravity, supersymmetry, and the cosmological constant—remain unresolved. Featuring cosmologist Neil Weiner, string theorist Eva Silverstein, and physicist Vijay Balasubramanian, with moderation from philosopher of science Jill North, this podcast explores what the future holds for physics.
This podcast was made possible through the support of a grant from the John Templeton Foundation. The opinions expressed in this podcast are those of the speaker(s) and do not necessarily reflect the views of the John Templeton Foundation.
Mobile technology is emerging as a powerful tool for transforming the way clinical research is conducted now and in the future. Acquisition of real-time biometric data though the use of wireless medical sensors will allow for around-the-clock patient monitoring, reduce costly clinic visits, and streamline inefficient administrative processes. With the promise of this technology also comes challenges including digital data privacy concerns, patient compliance issues, and practical considerations such as continuous powering of these devices.
This podcast provides an illuminating examination of both the promises and challenges that underpin the implementation of mobile technology into the clinical realm.