The Tata Transformation Prize will recognize Indian scientists for research to solve societal needs and promote economic competitiveness
Mumbai, India | 4 January 2023 – Tata Sons and The New York Academy of Sciences today announced the Tata Transformation Prize to recognize and support promising scientists in India who are developing innovative technological solutions to critical societal challenges.
The new prize will be awarded each year to three scientists for innovations in each of three areas: food security, sustainability, and healthcare. Each winner will each receive INR 2 crores, and will be honoured at a ceremony in India in December.
“This prize will accelerate breakthrough innovations by the Indian scientific community,” said Natarajan Chandrasekaran, Chairman of the Board of Tata Sons. “We hope this prize will help bring the transformational work of Indian scientists to light, reward them appropriately, and encourage them in taking solutions to market. The Tata Transformation Prize is one small way in which we will promote science and scientists to solve India’s national problems.”
Award Criteria
Applicants for the prize must be active researchers with a doctoral degree, or equivalent, and be employed by an eligible university, institute, or other research organization in India. Applicants must propose technologies addressing food security, sustainability, or healthcare challenges with a focus on digital and technological transformation. Prize winners will be scientists whose proposed innovations re-imagine traditional practices and business models, transform technological paradigms, improve public trust, and promote an open and connected world.
“Pathbreaking research takes place in India, resulting in important advances in science around the world,” said Nicholas B. Dirks, President and CEO of The New York Academy of Sciences. “This prize is focused not only on science, but on innovative discoveries that put science to work for the betterment of society, to solving major global challenges in three core areas. We are so pleased to be working with Tata, and Chairman N. Chandrasekaran, to support scientific and technical innovation in India. It will also raise national and international awareness of India’s strengths in scientific research and development.”
The Tata Transformation Prize is the latest in a series of prominent awards and scholarship programs the Academy and its partners present each year to accomplished early-career and established scientists around the world. These initiatives, along with education and professional development programs for students and young scientists, reflect the Academy’s broader commitment to strengthening and diversifying the pipeline for skilled and talented scientists globally.
Founded by Jamsetji Tata in 1868, the Tata Group is a global enterprise, headquartered in India, comprising 30 companies across ten verticals. The group operates in more than 100 countries across six continents, with a mission ‘To improve the quality of life of the communities we serve globally, through long-term stakeholder value creation based on Leadership with Trust’.
Tata Sons is the principal investment holding company and promoter of Tata companies. Sixty-six percent of the equity share capital of Tata Sons is held by philanthropic trusts, which support education, health, livelihood generation and art and culture.
In 2021-22, the revenue of Tata companies, taken together, was US $128 billion (INR 9.6 trillion). These companies collectively employ over 935,000 people.
Each Tata company or enterprise operates independently under the guidance and supervision of its own board of directors. There are 29 publicly-listed Tata enterprises with a combined market capitalisation of $311 billion (INR 23.6 trillion) as on March 31, 2022. Tata Group Companies include Tata Consultancy Services, Tata Motors, Tata Steel, Tata Chemicals, Tata Consumer Products, Titan, Tata Capital, Tata Power, Indian Hotels, Tata Communications, Tata Electronics, Air India and Tata Digital.
The New York Academy of Sciences’ President and CEO Nicholas Dirks spoke recently with SVP and Director of IBM Research Dario Gil about how science is changing.
Science in 1945 was big science at big labs, with lots of barriers—including the barriers of national borders.
The New York Academy of Sciences (the Academy) has a history that goes back over twice as far. But it is a 200-year-old institution that is not doing old fashioned science. Instead, the Academy is striving to meet the needs of the 21st century.
Academy President and CEO Nicholas Dirks spoke recently with SVP and Director of IBM Research Dario Gil about how science is changing.
The two leaders have been instrumental in the launch the International Science Reserve (ISR), a network designed to help scientists meet many of the big challenges we are facing today. It is an ambitious program to facilitate evidence-based solutions to global crises.
Nick started the conversation by asking Dario to describe what he thinks characterizes the best contemporary science.
Individual Rights and the Public Good
Computer science is at the heart of many of the rapid developments we are witnessing in science, medicine, engineering, and technology. Dario and Nick discussed these achievements, as well as challenges in balancing those against threats to individual rights and the public good.
The pandemic placed many new demands on science and scientists. IBM stepped up in many important ways, including by setting up a system to provide computing resources to scientists, clinical researchers, and drug developers. Those efforts pointed to future opportunities for the sharing of computing and other resources in times of global need. In his conversation with Nick, Dario explained how this experience set the stage for the International Science Reserve.
The ISR recently completed an important milestone, its first “readiness” exercise. This featured three wildfire scenarios–a crown fire in the conifer forests of the Northwestern United States, a rapidly moving brush fire in Greece, and a slow burning peatland fire in Indonesia. The exercise demonstrated success in building an international network of scientists willing and able to contribute their skills to crisis response. The exercise also yielded important information about how to assemble resources those scientists could call upon to support their research when disaster strikes.
Do you want to be part of this impactful network of scientists? Join the ISR today
The Blavatnik Awards for Young Scientists in the United Kingdom are the largest unrestricted prize available to early career scientists in the Life Sciences, Physical Sciences & Engineering, and Chemistry in the UK. The three 2021 Laureates each received £100,000, and two Finalists in each category received £30,000 per person. The honorees are recognized for their research, which pushes the boundaries of our current technology and understanding of the world. In this event, held at the historic Banqueting House in London, the UK Laureates and Finalists had a chance to explain their work and its ramifications to the public.
Victoria Gill, a Science and Environment Correspondent for the BBC, introduced and moderated the event. She noted that “Science has saved the world and will continue to do so,” and stressed how important it is for scientists to engage the public and share their discoveries at events like this. This theme arose over and over again over the course of the day.
Symposium Highlights
Single-cell analyses can reveal how multicellular animals develop and how our immune systems deal with different pathogens we encounter over the course of our lives.
Viruses that attack bacteria—bacteriophages—may help us fight antibiotic resistant bacterial pathogens.
Fossils offer us a glimpse into what life on Earth was like for the millennia in which it thrived before mammals took over.
Stacking layers of single-atom-thick sheets can make new materials with desired, customizable properties.
Memristors are electronic components that can remember a variety of memory states, and can be used to build quicker and more versatile computer chips than currently used.
The detection of the Higgs boson, which had been posited for decades by mathematical theory but was very difficult to detect, confirmed the Standard Model of Physics.
Single molecule magnets can be utilized for high density data storage—if they can retain their magnetism at high enough temperatures.
When examining how life first arose on Earth, we must consider all of its requisite components and reactions in aggregate rather than assigning primacy to any one of them.
Speakers
Stephen L. Brusatte The University of Edinburgh
Sinéad Farrington The University of Edinburgh
John Marioni European Bioinformatics Institute and University of Cambridge
David P. Mills The University of Manchester
Artem Mishchenko The University of Manchester
Matthew Powner University College London
Themis Prodromakis University of Southampton
Edze Westra University of Exeter
Innovating in Life Sciences
Speakers
John Marioni, PhD European Bioinformatics Institute and University of Cambridge, 2021 Blavatnik Awards UK Life Sciences Finalist
Edze Westra, PhD University of Exeter, 2021 Blavatnik Awards UK Life Sciences Finalist
Stephen Brusatte, PhD The University of Edinburgh, 2021 Blavatnik Awards UK Life Sciences Laureate
How to Build an Animal
John Marioni, PhD, European Bioinformatics Institute and University of Cambridge, 2021 Blavatnik Awards UK Life Sciences Finalist
Animals grow from one single cell: a fertilized egg. During development, that cell splits into two, and then into four, and so on, creating an embryo that grows into the billions of cells comprising a whole animal. Along the way, the cells must differentiate into all of the different cell types necessary to create every aspect of that animal.
Each cell follows its own path to arrive at its eventual fate. Traditionally, the decisions each cell has to make along that path have been studied using large groups of cells or tissues; this is because scientific lab techniques have typically required a substantial amount of starting material to perform analyses. But now, thanks in large part to the discoveries of John Marioni and his lab group, we have the technology to track individual cells as they mature into different cell types.
Marioni has created analytical methods capable of observing patterns in all of the genes expressed by individual cells. Importantly, these computational and statistical methods can be used to analyze the enormous amounts of data generated from the gene expression patterns of many individual cells simultaneously. In addition to furthering our understanding of cell fate decisions in embryonic development, this area of research—single cell genomics—can also be applied to many other processes in the body.
One relevant application is to the immune system: single cell genomics can detect immune cell types that are activated by exposure to a particular pathogen. To illustrate this, Marioni showed many gorgeous, colorized images of individual cells, highlighting their unique morphology and function. Included in these images was histology showing profiles of different types of T cells elicited by infection with SARS-CoV-2 (the virus that causes COVID-19).
The cells were computationally grouped by genetic profile and graphed to show how the different cell types correlated with disease severity. There are many other clinical applications of his research into genomics. For instance, he said, if we know exactly which cell types in the body express the targets of specific drugs, we will be better able to predict that drug’s effects (and side effects).
In addition to his lab work, Marioni is involved in the Human Cell Atlas initiative, a global collaborative project whose goal it is to genetically map all of the cell types in healthy human adults. When a cell uses a particular gene, it is said to “transcribe” that gene to make a particular protein—thus, the catalog of all of the genes one cell uses is called its “transcriptome.” The Human Cell Atlas is using these single cell transcriptomes to create the whole genetic map.
This research is currently completely redefining how we think of cell types by transforming our definition of a “cell” from the way it looks to the genetic profile.
Bacteria and Their Viruses: A Microbial Arms Race
Edze Westra, PhD University of Exeter, 2021 Blavatnik Awards UK Life Sciences Finalist
All organisms have viruses that target them for infection; bacteria are no exception. The viruses that infect bacteria are called bacteriophages, or phages.
Edze Westra’s lab studies how bacteria evolve to defend themselves against infection by phage and, specifically, how elements of their environment drive the evolution of their immune systems. Like humans, bacteria have two main types of immune systems: an innate immune system and an adaptive immune system. The innate immune system works similarly in both bacteria and humans by modifying molecules on the cell surface so that the phage can’t gain entry to the cell.
In humans, the adaptive immune system is what creates antibodies. In bacteria, the adaptive immune system works a little bit differently—a gene editing system, called CRISPR-Cas, cuts out pieces of the phage’s genome and uses it as a template to identify all other phages of the same type. Using this method, the bacterial cell can quickly discover and neutralize any infectious phage by destroying the phage’s genetic material. In recent years, scientists have harnessed the CRISPR-Cas system for use in gene editing technology.
Westra wanted to know under what conditions do bacteria use their innate immune system versus their adaptive immune system: How do they decide?
In studies using the bacterial pathogen Pseudomonas aeruginosa, his lab found that the decision to use adaptive vs. innate immunity is controlled almost exclusively by nutrient levels in the surrounding environment. When nutrient levels are low, the bacteria use the adaptive immune system, CRISPR-Cas; when nutrient levels are high, the bacteria rely on their innate immune system. He recognized that this means we can artificially guide the evolution of bacterial defense by controlling elements in their environment.
When we need to attack pathogenic bacteria for medical purposes, such as in a sick or infected patient, we turn to antibiotics. However, many strains of bacteria have developed resistance to antibiotics, leaving humans vulnerable to infection.
Additionally, our antibiotics tend to kill broad classes of microbes, often damaging the beneficial species we harbor in our bodies along with the pathogenic ones we are trying to eliminate. Phage therapy—a medical treatment where phages are administered to a patient with a severe bacterial infection—might be a good way to circumvent antibiotic resistance while also attacking bacteria in a more targeted manner, harming only those that harm us and leaving the others be.
Although it is difficult to manipulate bacterial nutrients within the context of a patient’s body, we can use antibiotics to direct this behavior. Antibiotics that are shown to limit bacterial growth will induce the bacteria to use the CRISPR-Cas strategy, mimicking the effects of a low-nutrient environment; antibiotics that work by killing bacteria will induce them to use their innate defenses. In this way, it may be possible to direct the evolution of bacterial defense systems in order to reveal their weaknesses and target them with phage therapy.
The Rise and Fall of the Dinosaurs
Stephen Brusatte, PhD The University of Edinburgh, 2021 Blavatnik Awards UK Life Sciences Laureate|
Stephen Brusatte is a paleontologist, “and paleontologists”, he says, “are really historians”. Just as historians study recorded history to learn about the past, paleontologists study prehistory for the same reasons.
The Earth is four and a half billion years old, and humans have only been around for the last three hundred and fifty thousand of those years. Dinosaurs were the largest living creatures to ever walk the earth; they started out around the size of house cats, and over eighty million years they evolved into the giant T. rexes, Stegosauruses, and Brontosauruses in our picture books.
They reigned until a six-mile-wide asteroid struck the Earth sixty-six million years ago at the end of the Cretaceous period, extinguishing them along with seventy-five percent of the other species on the planet. Brusatte called this day “the worst day in Earth’s history.” However, the demise of dinosaurs paved the way for mammals to take over.
Fossils can tell us a lot about how life on this planet used to be, how the earth and its occupants respond to climate and environmental changes, and how evolution works over long timescales. Particularly, fossils show how entirely new species and body plans emerge.
Each fossil can yield new knowledge and new discoveries about a lost world, he said. It can teach us how bodies change and, ultimately, how evolution works. It is from fossils that we know that today’s birds evolved from dinosaurs.
Life Sciences Panel Discussion
Victoria Gill started the life sciences panel discussion by asking all three of the awardees if, and how, the COVID-19 pandemic changed their professional lives: did it alter their scientific approach or were they asking different questions?
Westra replied that the lab shutdown forced different, non-experimental approaches, notably bioinformatics on old sequence data. He said that they found mobile genetic elements, and the models of how they moved through a population reminded him of epidemiological models of COVID spread.
Marioni shared that he was inspired by how the international scientific community came together to solve the problem posed by the pandemic. Everyone shared samples and worked as a team, instead of working in isolation as they usually do. Brusatte agreed that enhanced collaboration accelerated discoveries and should be maintained.
Questions from the audience, both in person and online, covered a similarly broad of a range of topics. An audience member asked about where new cell types come from; Marioni explained that if we computationally look at gene transcription changes in single cells over time, we can make phylogenetic trees showing how cells with different expression patterns arise.
A digital attendee asked Brusatte why birds survived the asteroid impact when other dinosaurs didn’t. Brusatte replied that the answer is not clear, but it is probably due to a number of factors: they have beaks so they can eat seeds, they can fly, and they grow fast. Plus, he said, most birds actually did not survive beyond the asteroid impact.
Another audience member asked Brusatte if the theory that the asteroid killed the dinosaurs was widely accepted. He replied that it is widely accepted that the impact ended the Cretaceous period, but some scientists still argue that other factors, like volcanic eruptions in India, were the prime mover behind the dinosaurs’ demise.
Another viewer asked Westra why the environment impacts a bacterium’s immune strategy. He answered that in the presence of antibiotics that slow growth, infection and metabolism are likewise slowed so the bacteria simply have more time to respond. He added that the level of diversity in the attacking phage may also play a role, as innate immunity is better able to deal with multiple variants.
To wrap up the session, Victoria Gill asked about the importance of diversity and representation and wondered how to make awards programs like this more inclusive. All three scientists agreed that it is hugely important, that the lack of diversity is a problem across all fields of research, that all voices must be heard, and that the only way to change it is by having hard metrics to rank universities and departments on the demographics of their faculty.
Innovating in Physical Sciences & Engineering
Speakers
Artem Mishchenko, PhD The University of Manchester, 2021 Blavatnik Awards UK Physical Sciences & Engineering Finalist
Themis Prodromakis, PhD University of Southampton, 2021 Blavatnik Awards UK Physical Sciences & Engineering Finalist
Sinead Farrington, PhD The University of Edinburgh, 2021 Blavatnik Awards UK Physical Sciences & Engineering Laureate
Programmable van der Waals Materials
Artem Mishchenko, PhD The University of Manchester, 2021 Blavatnik Awards UK Physical Sciences & Engineering Finalist
Materials science is vital because materials define what we can do, and thus define us. That’s why the different eras in prehistory are named for the materials used: the Stone Age, the Bronze Age, the Iron Age, the Copper Age. The properties of the materials available dictated the technologies that could be developed then, and the properties of the materials available still dictate the technologies that can be developed now.
Van der Waals materials are materials that are only one or a few atoms thick. The most well-known is probably graphene, which was discovered in 2004 and is made of carbon. But now hundreds of these two-dimensional materials are available, representing almost the whole periodic table, and each has different properties. They are the cutting edge of materials innovation.
Mishchenko studies how van der Waals materials can be made and manipulated into materials with customizable, programmable properties. He does this by stacking the materials and rotating the layers relative to each other. Rotating the layers used to be painstaking, time-consuming work, requiring a new rig to make each new angle of rotation. But his lab developed a single device that can twist the layers by any amount he wants. He can thus much more easily make and assess the properties of each different material generated when he rotates a layer by a given angle, since he can then just reset his device to turn the layer more or less to devise a new material. Every degree of rotation confers new properties.
His lab has found that rotating the layers can tune the conductivity of the materials and that the right combination of angle and current can make a transistor that can generate radio waves suitable for high frequency telecommunications. With infinite combinations of layers available to make new materials, this new field of “twistronics” may generate an entirely new physics, with quantum properties and exciting possibilities for biomedicine and sustainability.
Memristive Technologies: From Nano Devices to AI on a Chip
Themis Prodromakis, PhD University of Southampton, 2021 Blavatnik Awards UK Physical Sciences & Engineering Finalist
Transistors are key elements in our electronic devices. They process and store information by switching between on and off states. Traditionally, in order to increase the speed and efficiency of a device one increased the number of transistors it contained. This usually entailed making them smaller. Smartphones contain seven billion transistors! But now it has become more and more difficult to further shrink the size of transistors.
Themis Prodromakis and his team have been instrumental in developing a new electronic component: the memristor, or memory resistor. Memristors are a new kind of switch; they can store hundreds of memory states, beyond on and off states, on a single, nanometer-scale device. Sending a voltage pulse across a device allows to tune the resistance of the memristor at distinct levels, and the device remembers them all.
One benefit of memristors is that they allow for more computational capacity while using much less energy from conventional circuit components. Systems made out of memristors allow us to embed intelligence everywhere by processing and storing big data locally, rather than in the cloud. And by removing the need to share data with the cloud, electronic devices made out of memristors can remain secure and private. Prodromakis has not only developed and tested memristors, he is also quite invested in realizing their practical applications and bringing them to market.
Another amazing application of memristors is linking neural networks to artificial ones. Prodromakis and his team have already successfully connected biological and artificial neurons together and enabled them to communicate over the internet using memristors as synapses. He speculates that such neuroprosthetic devices might one day be used to fix or even augment human capabilities, for example by replacing dysfunctional regions of the brain in Alzheimer’s patients. And if memristors can be embedded in a human body, they can be embedded in other environments previously inaccessible to electronics as well.
What Do We Know About the Higgs Boson?
Sinead Farrington, PhD The University of Edinburgh, 2021 Blavatnik Awards UK Physical Sciences & Engineering Laureate
In the Standard Model of particle physics, the bedrock of modern physics, fermions are the elementary particles comprising all of the stable matter in the universe, while bosons—the other collection of elementary particles—are the ones that transmit forces. The Higgs boson, whose existence was theoretically proposed in 1964, is a unique particle; it gives mass to the other particles by coupling with them.
Sinéad Farrington led the group at CERN that further elucidated the properties of the Higgs boson and thus bolstered the Standard Model. The Standard Model “effectively encapsulates a remarkably small set of particles that make up everything we know about and are able to create,” explained Farrington.
“The Higgs boson is needed to maintain the compelling self-consistency of the Standard Model. It was there in theory, but the experimental observation of it was a really big deal. Nature did not have to work out that way,” Farrington said.
Farrington and her 100-person international team at the Large Hadron Collider demonstrated that the Higgs boson spontaneously decays into two fermions called tau leptons. This was experimentally challenging because tau is unstable, so the group had to infer that it was there based on its own degradation products. She then went on to develop the analytical tools needed to further record and interpret the tau lepton data and was the first to use machine learning to trigger, record, and analyze the massive amounts of data generated by experiments at the LHC.
Now she is looking to discover other long-lived but as yet unknown particles beyond the Standard Model that also decay into tau leptons, and plans to make more measurements using the Large Hadron Collider to further confirm that the Higgs boson behaves the way the Standard Model posits it will.
In addition to the satisfaction of verifying that a particle predicted by mathematical theorists actually does exist, Farrington said that another consequence of knowing about the Higgs boson is that it may shed light on dark matter and dark energy, which are not part of the Standard Model. Perhaps the Higgs boson gives mass to dark matter as well.
Physical Sciences & Engineering Panel Discussion
Victoria Gill started this session by asking the participants what they plan to do next. Farrington said that she would love to get more precise determinations on known processes, reducing the error bars upon them. And she will also embark on an open search for new long-lived particles—i.e. those that don’t decay rapidly—beyond the Standard Model.
Prodromakis wants to expand the possibilities of memristive devices, since they can be deployed anywhere and don’t need a lot of power. He envisions machine-machine interactions like those already in play in the Internet of Things as well as machine-human interactions. He knows he must grapple with the ethical implications of this new technology, and mentioned that it will also require a shift in how electricity, electronics, and computational fabrics are taught in schools.
Mishchenko is both seeking new properties in extant materials and making novel materials and seeing what they’ll do. He’s also searching for useful applications for all of his materials.
A member of the audience asked Farrington if, given all of the new research in quantum physics, we have new data to resolve the Schrӧedinger’s cat conundrum? But she said no, the puzzle still stands. That is the essence of quantum physics: there is uncertainty in the (quantum) world, and both states exist simultaneously.
Another wondered why she chose to look for the tau lepton as evidence of the Higgs boson’s degradation and not any other particles, and she noted that tau was the simplest to see over the background even though it does not make up the largest share of the breakdown products.
An online questioner asked Prodromakis if memristors could be used to make supercomputers since they allow greater computational capacity. He answered that they could, in principle, and could be linked to our brains to augment our capabilities.
Someone then asked Mishchenko if his technology could be applied into biological systems. He said that in biological systems current comes in the form of ions, whereas in electronic systems current comes in the form of electrons, so there would need to be an interface that could translate the current between the two systems. Some of his materials can do that by using electrochemical reactions that convert electrons into ions. But the materials must also be nontoxic in order to be incorporated into human tissues, so he thinks this innovation is thirty to forty years away.
The last query regarded whether the participants viewed themselves as scientists or engineers. Farrington said she is decidedly a physicist and not an engineer, though she collaborates with civil and electrical engineers and relies on them heavily to build and maintain the colliders and detectors she needs for her work.
Prodromakis was trained as an engineer, but now works at understanding the physics of devices so he can design them to reliably do what he wants them to do. And Mishchenko summarized the difference between them by saying the engineering problems are quite specific, while scientists mostly work in darkness. At this point, he considers himself an entrepreneur.
Innovating in Chemistry
Speakers
David P. Mills, PhD The University of Manchester, 2021 Blavatnik Awards UK Chemistry Finalist
Matthew Powner, PhD University College London, 2021 Blavatnik Awards UK Chemistry Finalist
Building High Temperature Single-Molecule Magnets
David P. Mills, PhD The University of Manchester, 2021 Blavatnik Awards UK Chemistry Finalist
David Mills’ lab “makes molecules that have no right to exist.” He is specifically interested in the synthesis of small molecules with unusual shapes that contain metal ions, and using these as tiny molecular magnets to increase data storage capacity to support high-performance computing. Mills offers a bottom-up approach to this problem: he wants to make new molecules for high density data storage. This could ultimately make computers smaller and reduce the amount of energy they use.
Single-Molecule Magnets (SMMs) were discovered about thirty years ago. They differ from regular magnets, which derive their magnetic properties from interactions between atoms, but they still have two states: up and down. These can be used to store data in a manner similar to the bits of binary code that computers currently use. Initially, SMMs could only work at extremely cold temperatures, just above absolute zero. For many years, scientists were unable to create an SMM capable of operation above −259oC, only 10oC above the temperature of liquid helium, which makes them decidedly less than practical for everyday use.
Mills works with a class of elements called the lanthanides, sometimes known as the rare-earth metals, that are already used in smartphones and hybrid vehicles. One of his students utilized one such element, dysprosium, in the creation of an SMM that was dubbed, dysprosocenium. Dysprosocenium briefly held its magnetic properties even at a blistering −213oC, the warmest temperature at which any SMM had ever functioned. This temperature is starting to approach the temperature of liquid nitrogen, which has a boiling point of −195.8°C. If an SMM could function indefinitely at that temperature, it could potentially be used in real-world applications.
When developing dysprosocenium, the Mills group and their collaborators learned that controlling molecular vibrations is essential to allowing the single-molecule magnet to work at such high temperatures. So, his plan for the future is to learn how to control these vibrations and work toward depositing single-molecule magnets on surfaces.
The Chemical Origins of Life
Matthew Powner, PhD University College London, 2021 Blavatnik Awards UK Chemistry Finalist
The emergence of life is the most profound transition in the history of Earth, and yet we don’t know how it came about. Earth formed four-and-a-half billion years ago, and it is believed that the earliest life-forms appeared almost a billion years later. However, we don’t know what happened in the interim.
Life’s Last Universal Common Ancestor (LUCA) is believed to be much closer to modern life forms than to that primordial originator, so although we can learn about life’s common origins from LUCA, we can’t learn about the true Origin of Life. Where did life come from? How did the fundamental rules of chemistry give rise to life forms? Why did life organize itself the way that it did?
Matthew Powner thinks that to answer these vital existential questions, which lie at the nexus of chemistry and biology, we must simultaneously consider all of life’s components—nucleic acids, amino acids and peptides, metabolic reactions and pathways—and their interactions. We can’t just look at any one of them in isolation.
Since these events occurred in the distant past, we can’t discover it—we must reinvent it. To test how life came about, we must build it ourselves, from scratch, by generating and combining membranes, genomes, and catalysis, and eventually metabolism to generate energy.
In this presentation, Powner focused on his lab’s work with proteins. Our cells, which are highly organized and compartmentalized machines, use enzymes—proteins themselves—and other biological macromolecules to synthesize proteins. So how did the first proteins get made? Generally, the peptide bonds linking amino acids together to make proteins do not form at pH 7, the pH of water and therefore of most cells. But Powner’s lab showed that derivatives of amino acids could form peptide bonds at this pH in the presence of ultraviolet light from the sun, and sulfur and iron compounds, all of which were believed to have been present in the prebiotic Earth.
Chemistry Panel Discussion
Victoria Gill started this one off by asking the chemists how important it is to ask questions without a specific application in mind. Both agreed that curiosity defines and drives humanity, and that the most amazing discoveries arise just from trying to satisfy it. Powner says that science must fill all of the gaps in our understanding, and the new knowledge generated by this “blue sky research” (as Mills put it) will yield applications that will change the world but in unpredictable ways. Watson and Crick provide the perfect example; they didn’t set out to make PCR, but just to understand basic biological questions. Trying to drive technology forward may be essential, but it will never change the world the same way investigating fundamental phenomena for its own sake can.
One online viewer wanted to know if single-molecule magnets could be used to make levitating trains, but Mills said that they only work at the quantum scale; trains are much too big.
Other questions were about the origin of life. One wanted to know if life arose in hydrothermal vents, one was regarding the RNA hypothesis (which posits that RNA was the first biological molecule to arise since it can be both catalytic and self-replicating), and one wanted to know what Powner thought about synthetic biology. In terms of hydrothermal vents, Powner said that we know that metabolism is nothing if not adaptable—so it is difficult to put any constraints on the environment in which it arose.
He said that the RNA world is a useful framework in which to form research questions, but he no longer thinks it is a viable explanation for how life actually arose since any RNA reactions would need a membrane to contain them in order to be meaningful. And he said that synthetic biology—the venture of designing and generating cells from scratch, and even using non-canonical nucleic acids and amino acids beyond those typically used by life forms—is a complementary approach to the one his lab takes to investigate why biological systems are the way they are.
The Future of Research in the UK: How Will We Address the Biggest Challenges Facing Our Society?
Contributors
Stephen Brusatte, PhD The University of Edinburgh, 2021 Blavatnik Awards UK Life Sciences Laureate
Sinead Farrington, PhD The University of Edinburgh, 2021 Blavatnik Awards UK Physical Sciences & Engineering Laureate
Victoria Gill moderated this discussion with the Blavatnik laureates, Stephen Brusatte and Sinead Farrington. First, they discussed how COVID-19 affected their professional lives. Both of them spoke of how essential it was for them to support their students and postdocs throughout the pandemic. These people may live alone, or with multiple roommates, and they may be far from family and home, and both scientists said they spent a lot of time just talking to them and listening to them. This segued into a conversation about how the rampant misinformation on social media about COVID-19 highlighted the incredible need for science outreach, and how both laureates view it as a duty to communicate their work to the public by writing popular books and going into schools.
Next, they tackled the lack of diversity in STEM fields. Farrington said that she has quite a diverse research group—but that it took effort to achieve that. This led right back to public outreach and schooling. She said that one way to increase diversity would be to develop all children’s’ analytical thinking skills early on to yield “social leveling” and foment everyone’s interest in science. Brusatte agreed that increased outreach and engagement is an important way to reach larger audiences and counteract the deep-seated inequities in our society.
Lastly, they debated if science education in the UK is too specialized too early, and if it should be broader, given the interdisciplinary nature of so many breakthroughs today. Brusatte was educated under another system so didn’t really want to opine, but Farrington was loath to sacrifice depth for breadth. Deep expert knowledge is important.
Travel to Mars — and successful habitation there — will take more than good science, technology and engineering. It will require solutions to challenges in politics, ethics and law.
At this year’s South by Southwest Festival, I had the pleasure of asking a panel of experts some big questions about travel to Mars. The journey will push limits of the human body and may take us to the edge of ethical behavior – or beyond. Here are my top 10 questions and takeaways from the conversation.
1. The effects of space travel on the human body may not be reversible.
Two hazards astronauts will face during a trip to Mars—and a stay there—are DNA-breaking radiation and the effects of weightlessness and microgravity.
Astronauts have been exposed to the hazards of weightlessness and radiation in space since 1968. Here Owen Garriott retrieves an experiment outside Skylab in 1973.
“Imagine you’re lying off the side of your bed when you’re a kid, and all the blood is rushing to your head. In microgravity, the result of increased pressure that builds up in the head, pressing against the brain and against the eyes, can cause changes in vision—Spaceflight Associated Neuro-Ocular Syndrome,” explained Eliah Overbey, PhD, a NASA space biology postdoctoral fellow and postdoctoral associate in computational biomedicine of physiology and biophysics at Weill Cornell Medicine. “Over 50% of astronauts will experience some sort of vision change when they’re in space. Some of that does reverse when they return to Earth and some of it does not, some of it persists.”
2. The jury is still out on whether there is—or ever was—life on Mars.
“Right now, it looks like Mars’ surface is probably pretty inhospitable to microbes. So, the evidence that we’re looking for at the surface is really focused more on past life, life in the geologic record. But it’s a completely different story in the subsurface,” reported Charity Phillips-Lander, PhD, a senior research scientist in astrobiology at the Southwest Research Institute who studies the habitability and possible bio-signatures of planetary bodies.
Floor of Gale Crater is seen toward the top of this photo, taken from Curiosity Mars Rover
“We see manganese oxides—what you would call ‘desert varnish’—that show up in some of the rocks in Hale Crater on Mars and also on Earth. Those are typically precipitated by microorganisms. Jezero Crater and Gale Crater show really low carbon isotopic values that might be indicative of methanotrophs—microbes that eat methane for a living. We’ve seen methane in Mars’ atmosphere.” That’s possible evidence, Phillips-Lander said, of evidence of life on Mars in the past. “But we need more evidence, and that’s what Perseverance is rolling around looking for right now,” she added, referring to the robot that is now roaming the planet.
Candidate astronauts selfie
3. Who gets to go? It is not too soon to call for disability inclusion in space exploration.
“Deciding who among the 8 billion of us gets to go up into space, and even go to Mars, is a tough question,” said Erika Nesvold, PhD, a co-founder of the JustSpace Alliance, which advocates for a more ethical, inclusive future in space. “Until now, the people who are able to go to space were the people selected by agencies like NASA, or more recently, people who have been able to afford space tourism flights. If you wanted to go to space, you need to be able to pass the astronaut selection, including a really strict health screening. This means that the people who have gone to space so far have primarily been very healthy, able-bodied people, which leaves out a huge portion of our population who are disabled. Why don’t we have disabled astronauts? What would it look like to redesign our space technology, to make it more accessible to people with disabilities?” Nesvold highlighted projects such as AstroAccess, which has just started launching disabled scientists, veterans, athletes, students, and artists on parabolic flights to experience weightlessness and low gravity conditions. A key goal is to investigate how space vehicles can be modified so that all astronauts and explorers—regardless of disability on Earth—can thrive in space.
Pop artist Viktoria floats upside down in zero gravity on board AstroAccess Flight 1 in October, 2021. Photo: AI Powers for Zero Gravity Corporation
4. Space immigration: let’s not repeat the mistakes we’ve made on Earth.
NASA is hoping to put astronauts on Mars by 2035. It’s not difficult to conceive that, in the years to follow, others may arrive on Mars as migrants or as refugees. “Even now, we can see the huge human rights issues that come up when one group of people moves to a new place, especially if there are already people in that place,” reflected Nesvold. “Suppose we manage to get a population of humans living on Mars and then a second group wants to go there too. How will the original inhabitants feel about that immigration?” Nesvold said the response might vary, for example, depending on whether the new arrivals are fleeing strife, or if they have something to offer economically. “It’s worth getting some historians in the room… [How can we] learn from what’s happened here on Earth, to protect all of those groups in the future?”
NASA illustration of an astronaut on Mars
5. Survival hacks have to be sustainable.
“One of the things that we need to focus on is sustainability, because for every ounce of material you take with you, you also have to provide fuel to get it there,” Phillips-Lander pointed out. “Through NASA’s biological and physical science programs, we’re experimenting with things like growing food on the moon. How do we do that, and how do we assess and prospect for the resources we might need? How do we print bricks, because we’re going to need to build a habitat? Can we create bioregenerative habitats that take CO2 and turn it back into oxygen, either through plants or microbes? We’re also looking at developing synthetic microbes that can carry out specific processes that might be beneficial to humans.”
6. Ethical quandaries abound if we engineer a “better human” for space travel.
Opportunities to protect and prepare the human body in advance of space travel, and for longer-term survival on Mars, are now on the horizon with bioengineering technologies like CRISPR gene editing and immunotherapy. “Is there some way that we can engineer astronauts to be more radiation-resistant or to overcome the fluid shifts that are going to cause different sorts of cognitive effects?” asked Overbey. “There’s an ethical question, really under debate on Earth: how much should we be editing the genome? Should you be editing cells that are going to pass on to your children? Can we justify gene editing in these contexts to overcome some of these limitations? Are we actually now morally obligated to do genetic engineering in order to adapt to those environments?” Overbey continued, “If we’re changing our genetic code, making permanent changes, are we changing how we define humans as a species, and making changes to genomes that will affect future generations?” Nesvold expanded on these ethical conundrums: “If we want to have self-sustaining human settlements in space, we have to figure out whether human reproduction is possible in space, with all the weightlessness and the radiation. At some point, even if you’ve done studies on animals, we’re going to have to try it, and that involves experimenting on pregnant people and fetuses… It’s a big ethical barrier to getting to the point of having self-sustaining human populations in space.”
Might we terraform Mars, turning it from a red planet to a green one, or a blue one like Earth, in an effort to make it more hospitable? “If we just go in and whole-scale terraform Mars right off the bat, then we defeat one of the scientific goals of human exploration, which is to figure out if there was life on Mars, or if there is life on Mars today,” warned Phillips-Lander. “So, initial missions are going to focus on minimizing the risk of contamination. We’ve established areas of Mars that are categorized as special regions because they have the highest potential for life. And so those areas are mostly off limits,” Nesvold said, referring to policies developed by the Committee on Space Research of the International Council for Science. She added: “The problem is that any terraforming we do to make Mars more like Earth, makes Mars less like Mars.” She paraphrased a question of scientific ethics raised in the film Jurassic Park: “We need to work really hard to make sure that no one eventually says about us, that we were so busy thinking about whether we could, that we didn’t think about whether we should.”
NASA Concept illustration, human settlement on Mars
8. How do we protect the rights of Mars amid an alien invasion?
Before we become too wrapped up in our own self-preservation as a species, we should remember an alien invasion is about to take place. But this time, we will be the aliens. The Outer Space Treaty of 1967 outlines a series of planetary protections that govern space and space travel, but many questions remain about the scope and enforceability of the treaty. “For every planetary mission that we undertake, part of the evaluation process for mission selection is planetary protection,” explained Phillips-Lander. She said mission planners must develop “a viable burden limit”—a maximum number of organisms that a spacecraft is allowed to carry. “For a special region like a lava tube on Mars that might be a habitable environment for life, that’s basically zero, which is really challenging to achieve,” she said. “We have a whole suite of clean rooms on Earth that are designed for that, and back planetary protection, so that we’re not bringing novel organisms back to Earth and releasing them, because that would obviously be potentially bad. We’re trying to do it both ways.” Nesvold took the conversation on the protection of Mars astrobiology further: “What rights do the microbes have to not be exterminated if we want to move up there with our Earth microbes and potentially wipe them out? We all use Lysol, and we’re all really trying to kill a certain virus right now. But this would be a really unusual population of microbes. Are they special because they come from another planet? And there are people who argue that even an environment that has no life in it has some kind of intrinsic rights to its own integrity.”
Mars Curiosity rover after drilling rock samples with Gale Crater in the background
9. How can we live together on Mars?
Numerous ethical, sociological, and even psychological questions must be considered for space travel. “As we’re trying to figure out how we will live in this space environment, we also have to figure out how we’ll live with each other in the space environment, because sometimes the other humans in your group are your biggest problem or your most important asset as you’re facing a really extreme environment,” Nesvold said. “We’re going to have to figure out how to self-organize and have some self-governance, the way that small groups have throughout history. We’ll need to be able to answer questions like: How do we handle conflicts between people living in space or between the people living in space and the ones back on Earth? What happens if you move to Mars to take a job and then you lose that job—do you have to pay for water, food, and air in space? Do you get a free ticket back to Earth or are you just on your own in a deadly environment? We’re certainly capable of bringing our inequalities with us into space, and I’m very confident we’re capable of inventing new ones in space. We need to be deliberate about this and think about what kind of future we want for ourselves, wherever it is, and make sure that we’re taking steps to protect that future for our descendants in space.”
10. Space capitalism: will its innovations be our salvation?
Why should we be spending so much money to explore Mars? Will the benefit warrant the costs?
Falcon 9 liftoff; photo: SpaceX
“The return on investment is worth it because we’re going to get new technologies or access to resources that you don’t have here on Earth,” posited Nesvold. “But you have to make sure that those benefits are actually being distributed equitably.” When asked to comment on the billionaire-driven space ecosystem that we see flourishing today, Nesvold responded: “A big issue with the space program since its creation has been that it had to survive off of taxpayer money. If you can make the space sector profitable it becomes self-sustaining…. Profit-seeking is a big part of what’s supporting this industry and helping it move forward. Capitalism brings innovation, and innovation is what we need for space. The problem is that capitalism also roots a lot of misery and inequality. The trick is figure out how to get the innovation without increasing inequality and environmental destruction.”
One partial solution, Overbey said, are public-private partnerships that establish “guardrails” against out-of-control self-interest in space exploration. In her closing remarks, she described one big-picture view of why we should take on the challenge of space exploration: “We may think the Earth will end at some point, maybe millions, billions of years in the future. Or there’s always the threat that something could go horribly wrong on Earth within our lifetimes. Right now, where we’re at, we don’t have the science with our technology to sustain ourselves in space or on another planet indefinitely. So, when we think about return on investment, is it numbers and dollar signs for medicine, for a new technology?” Or, Oberbey asked, “What is the cost of [saving] the human race?”
Minor edits have been made to quotes for clarity.
Photos and illustrations courtesy NASA, unless noted otherwise.
The Blavatnik Awards for Young Scientists in Israel is one of the largest prizes ever created for early-career researchers in Israel. Given annually to three outstanding, early-career faculty from Israeli universities in three categories—Life Sciences, Physical Sciences & Engineering, and Chemistry—the awards recognize extraordinary scientific achievements and promote excellence, originality, and innovation.
On August 2, 2021, the New York Academy of Sciences celebrated the 2020 and 2021 Laureates at the Israel Academy of Sciences and Humanities in Jerusalem, Israel. The multidisciplinary symposium, chaired by Israel Prize winners Adi Kimchi and Mordechai (Moti) Segev, featured a series of lectures on everything from a new class of RNA to self-assembling nanomaterials.
In this eBriefing, you’ll learn:
The secret life of bats, and how the brain shapes animal behavior
How genetic information in unchartered areas of the human genome—known as long noncoding RNA—could be used to develop treatments for cancer, brain injury, and epilepsy
Creative ways of generating light, X-rays, and other types of radiation for practical applications such as medical imaging and security scanners
The intricate choreography of protein assembly within cells, and how this dance may go awry in disease
Speakers
Yossi Yovel, PhD Tel Aviv University
Igor Ulitsky, PhD Weizmann Institute of Science
Emmanuel Levy, PhD Weizmann Institute of Science
Ido Kaminer, PhD Israel Institute of Technology
Life Sciences of Tomorrow
Speakers
Yossi Yovel, PhD Tel Aviv University
Igor Ulitsky, PhD Weizmann Institute of Science
From Bat Brains to Navigating Robots
Yossi Yovel, PhD, Tel Aviv University
In this presentation, Yossi Yovel describes his studies on bats and their use of echolocation to perceive and navigate through the world. To monitor bats behaving in their natural environment, he has developed miniaturized trackers—the smallest in the world—capable of simultaneously detecting location, ultrasonic sounds, movement, heart rate, brain activity, and body temperature changes.
By attaching these small sensors to many individual bats, Yovel is able to monitor large groups of free-flying bats—a task which would be almost impossible in other mammals. His current and future studies include applying bat echolocation theory to engineering acoustic control of autonomous vehicles.
Further Readings
Yovel
Moreno, K. R., Weinberg, M., Harten, L., Salinas Ramos, V. B., Herrera M, L. G., Czirják, G. Á., & Yovel, Y.
Igor Ulitsky outlines his investigation of the biology of a subtype of genetic material—long non-coding RNA (lncRNA)—an enigmatic class of RNA molecules. Similar to other classes of RNA molecules, lncRNAs are transcribed from DNA and have a single-strand structure; however, lncRNAs do not encode proteins. Even though non-coding regions of the genome comprise over 99% of our genetic material, little is actually known about how these regions function.
Ulitsky’s work has shown dynamic expression patterns across tissues and developmental stages, which appear to utilize diverse mechanisms of action that depend on their sub-cellular positions. These discoveries have unlocked the potential of using lncRNAs as both therapeutic agents and targets with promising leads for the treatment of diseases such as cancer, brain injury, and epilepsy.
Further Readings
Ulitsky
H. Hezroni, D. Koppstein, M.G. Schwartz, A. Avrutin, D.P. Bartel, I. Ulitsky.
Chemistry and Physical Sciences & Engineering of Tomorrow
Speakers
Emmanuel Levy, PhD Weizmann Institute of Science
Ido Kaminer, PhD Israel Institute of Technology
Playing LEGO with Proteins: Principles of Protein Assembly in Cells
Emmanuel Levy, PhD, Weizmann Institute of Science
In this presentation, Emmanuel Levy describes how defects in protein self-organization can lead to disease, and how protein self-organization can be exploited to create novel biomaterials. Levy has amassed a database of protein structural information that helps him to predict, browse, and curate the structural features—charged portions, hydrophobic and hydrophilic pockets, and point mutations—within a protein that govern the formation of quaternary structures. By combining this computational approach with experimental data Levy is able to uncover new mechanisms by which proteins operate within cells.
Further Readings
Levy
H. Garcia-Seisdedos, C. Empereur-Mot, N. Elad, E.D. Levy.
M. Meurer, Y. Duan, E. Sass, I. Kats, K. Herbst, B.C. Buchmuller, V. Dederer, F. Huber, D. Kirrmaier, M. Stefl, K. Van Laer, T.P. Dick, M.K. Lemberg, A. Khmelinskii, E.D. Levy, M. Knop.
Shining Light on the Quantum World with Ultrafast Electron Microscopy
Ido Kaminer, PhD, Israel Institute of Technology
Ido Kaminer discusses his research on light-matter interaction that spans a wide spectrum from fundamental physics to particle applications. Part of his presentation addressed the long-standing question in quantum theory over the predictability of motions quantum particles. He also demonstrated the first example of using free electrons to probe the motion of photons inside materials. Finally, he talked about the potential applications of tunable X-rays generated from the compact equipment in his lab, for biomedical imaging and other applications.
Further Readings
Kaminer
R. Dahan, S. Nehemia, M. Shentcis, et al., I. Kaminer.
Growing up in Romania, Mircea Dincă’s was first exposed to science. Now he’s engineering an electric Lamborghini.
Published October 1, 2021
By Roger Torda
Mircea Dincă (left) poses with Nick Dirks, President and CEO of The New York Academy of Sciences.
Mircea Dincă creates materials in the lab with surface features that can’t be found in nature. He then makes variants with electrical properties that other scientists once thought impossible. This is groundbreaking basic research with many emerging applications. One is particularly exciting: a supercapacitor to power a Lamborghini supercar.
Dincă, a professor of chemistry at MIT, is this year’s Blavatnik National Awards for Young Scientists Laureate in Chemistry. He heads a lab that synthesizes novel organic-inorganic hybrid materials and manipulates their electrochemical and photophysical properties.
Dincă and his students work with metal-organic frameworks, or MOFs. “These are basically what I like to call sponges on steroids because they are enormously porous,” Dincă told the Academy in a recent interview. “They have fantastically high surface areas, higher than anything that humanity has ever known.”
Metal-Organic Frameworks (MOFs)
MOFs have a hollow, crystalline, cage-like structure, consisting of an array of metal ions surrounded by organic “linker” molecules. Scientists can “tune” their porosity, creating MOFs that can capture molecules of different properties and size.
To help conceptualize the large surface area of MOFs, Dincă says a gram of the material would, if flattened out, cover an entire football field. This means their pores can hold an almost unimaginably large number of molecules. One application capitalizing on this capacity is gas storage. For example, a canister filled with MOFs would hold nine times more CO2 than an empty canister. Other emerging uses have included devices to manage heat, antimicrobial products, gas separation, and devices for scrubbing emissions and carbon capture.
Dincă first encountered MOFs as a graduate student. Several years later, after considerable research on the electronic structure of materials, he started envisioning MOFs with properties that had not been widely considered before. “Previously, people thought that metal-organic frameworks are just ideal insulators,” Dincă said. “But we realized that there are certain types of building blocks that, when put together, would allow the free flow of electrical charges.” This was something of a paradigm shift in the field.
A Partnership with Lamborghini
Dincă and his students started synthesizing MOFs with a variety of organic ligands and metal combinations to create materials that are both porous and conducting. They also developed ways to grow MOF crystals so they can be more easily studied with imaging tools, permitting analysis of their structure, atom-by-atom. The new techniques and materials have led to MOFs that might prove valuable for batteries, fuel cells, and energy storage. Dincă’s lab and MIT have signed a partnership with Lamborghini to use MOF supercapcitors in the company’s planned Terzo Millennio sportscar.
Dincă and his students also study the use of MOFs as catalysts, and as chemical sensors. They explore how these materials interact with light, which could lead to smart windows that lighten or darken automatically. Better solar cells are yet another possible application.
More efficient air conditioning, with considerable environmental benefit, is another goal. Dincă has co-founded a start-up called Transaera to build MOF-based cooling equipment that pulls water molecules out of air so that the AC doesn’t work as hard. The key is tuning the pores of the MOFs to just the right size to capture water at just the right humidity.
Scaling up remains a challenge for many of these applications. “It’s one thing to make a few grams in a laboratory, it’s quite another to make hundreds of kilograms so you can take them out into the real world,” Dincă said.
“Thirsty for Knowledge”
Dincă grew up in Romania, and says he got his first taste of chemistry in 7th grade. An MIT departmental biography playfully suggests “that having a dedicated teacher that did spectacular demonstrations with relatively limited regard for safety” was the initial influence. One imagines awe-inspiring, semi-controlled explosions in the front of a classroom of 12 year olds. In the following years, Dincă started participating in the Chemistry Olympiads, and in 1998, when he was in high school, he won first place at an international competition in Russia.
At the time, Dincă found he was running up against limits to his education. “I think the biggest challenges to my becoming a scientist were, early on in Romania where I grew up, that we just didn’t have access to labs, to books,” Dincă said. “That made me thirsty for knowledge.” So Dincă was eager to travel to the U.S. when he was offered a scholarship for undergraduate studies at Princeton. He then earned a Ph.D. from UC Berkeley. He has been teaching and conducting research at MIT since 2008.
Dincă met his wife, who is also from Romania, while they were both students at Princeton. She is a lawyer, and the couple have two children, Amalia and Gruia. Dincă’s father is a retired Romanian Orthodox priest, and his mother, a retired kindergarten teacher.
When he is not with his family or at work, Dincă might be running, hiking, or taking photographs.
Constant Exposure to the Unknown
Dincă enjoys teaching, including freshmen chemistry. For his more advanced students and postdocs, Dincă says he fosters original thinking by giving them as much responsibility as possible. “As a Principal Investigator myself, I tend to be very hands-off,” Dincă explained. “And that’s good because it allows students to take ownership of their projects and become creative themselves. In fact, most of the best ideas in my lab come from the students, not myself.”
One of the best things about being a scientist, Dincă said, is constant exposure to the unknown, and he is pleased when his commitment to basic research is recognized. “Being a Blavatnik National Award Laureate is, of course, fantastic recognition of my research, of my group’s efforts,” Dincă said. “But also, most importantly for me, it is recognition of the fact that curiosity-driven research is still appreciated.”
While curiosity may drive Dincă’s scientific inquiries, he believes applied research with new classes of MOFs will help address important environmental challenges. At the same time, there can be no doubt that one application may prove especially thrilling. “Never in my wildest dreams did I believe that just thinking about electrical current in porous materials would take me on a path to helping make an electric Lamborghini,” Dincă said. “But that is where our research has led us.”
Andrea Alù is challenging the laws of physics to improve data transmission. Oh yeah, he’s working on an invisibility cloak, too!
Published October 1, 2021
By Roger Torda
Andrea Alù
Andrea Alù isn’t satisfied with how light waves and sound travel through objects and space. So he engineers new materials that appear to violate some well-established laws of physics. Enhanced wireless communication and computing technologies, improved bio-medical sensors, and invisibility cloaks are just some of the achievements of his lab.
“We create our own materials, engineered at the nanoscale,” explained Alù, who is Director of the Photonics Initiative at the Advanced Science Research Center at the City University of New York (CUNY). “We call them metamaterials, which push technologies forward, to realize optical properties, electromagnetic properties, or acoustic properties that go well beyond what nature and natural materials offer us.”
In a recent interview with The New York Academy of Sciences (the Academy), Alù explained a core behavior of light that is at the heart of his research:
One of the most basic phenomena in optics is light refraction, which describes the change in direction of propagation of an optical beam as it enters a material. We can understand this as the collective excitation of molecules and charges in the material, produced by light. In metamaterials, we make up our own molecules—we call them metamolecules.
Metamaterials feature many different geometries of at the nanoscale. Some can be engineered to interact with light in such a way that they may actually make objects disappear from sight. It is a phenomenon called “cloaking.” Alù continued:
Engineering at the Nanoscale
This engineering at the nanoscale allows us to change the ways in which light refracts as it enters a metamaterial. By bending light in unusual ways, we can actually realize highly unusual optical phenomena, like enhancing or suppressing the reflections and scattering of light from an interface, making a small object appear much larger, or conversely, even disappear altogether, by hiding it from the impinging electromagnetic waves.
“Invisibility” has long been part of our popular imagination and science fiction, from H.G. Wells’ novels to Star Trek and Harry Potter. A pioneering theoretical step dates back to 1968, when a Russian physicist wondered if a phenomenon called “negative refraction” might be possible. But no materials featuring this property were known, and some scientists believed none would be found because negative refraction might violate widely-used equations describing the propagation of light. Thirty years later, in 2000, a team of scientists was able to demonstrate negative refraction in a metamaterial for a certain frequency of electromagnetic radiation. A few years later, experiments demonstrated actual metamaterial cloaking, and Scientific American proclaimed: “Invisibility Cloak Sees Light of Day.”
Alù started working on metamaterials in 2002, when he spent a year at the University of Pennsylvania as a visiting student. He has conducted pioneering research in the field ever since. A major achievement came in 2013. Alù, then at the University of Texas at Austin, and his collaborators, demonstrated the cloaking of a three-dimensional object using radio waves. The work showed that antennas, like the ones in our cell phones, could be made transparent to radio-waves, a finding of potential commercial and military value, as it eliminates interference between closely-spaced transmitters.
A Childhood Fascination
Alù’s interest in light and other electromagnetic waves began as a child in Italy when he was fascinated by how our radios and television sets receive broadcast information without wiring. His interest intensified in high school when he realized a “beautiful common mathematical framework” describes the propagation of light, radio signals, and sound, and the fact that no information can be transmitted faster than the speed of light.
Alù went on to study at the University of Roma Tre, where he earned a Ph.D. in electronic engineering. After a postdoctoral fellowship at the University of Pennsylvania, he joined the faculty of UT Austin in 2009, and moved to CUNY in 2018.
Nanomaterials being developed in Alù’s lab may also improve near-field microscopy for better biomedical imaging, and lead to optical computers, enabling faster and more efficient PCs that use light instead of electric signals.
Yet another area of intense research for Alù and his research team has been “breaking reciprocity,” with implications for improved transmission of sound as well as radio waves and light. “Light, sound, and radio waves, typically travel with symmetry between two points in space,” Alù explained. “If you hear me, I can hear you back. If you can see me, typically you can see me back. This property is rooted into the time reversal symmetry of the wave equations.”
Connecting Basic and Applied Research
Alù said his lab’s work in breaking this symmetry with metamaterials is a good illustration of the connection between basic and applied research:
Interestingly, making materials that transmit waves one way and not the other started as a curiosity, but it has rapidly become extremely useful, from improving data rates with which our cell phones or WiFi technologies operate to protecting sensitive lasers from reflections. This has been a very exciting quest, from basic research to applications.
Alù began his research and teaching career in the U.S. only after he earned his Ph.D. in Italy and, as a result, he found he initially had a smaller professional network than many of his peers. But Alù says the U.S. was very welcoming, and he quickly caught up:
I come from Italy and I did all my undergraduate and graduate studies there. So, coming to the U.S. first as a postdoc, then as a faculty member, I didn’t have a large support network around me, I didn’t initially have a lot of connections…. But at the same time, I have to say, the United States offers tremendous opportunities, in particular to young scientists, to help build up their research groups, and to thrive.
Alù continued: “The U.S. is an amazing country in welcoming young people, new talent, and supporting them in the broadest possible terms… An excellent example of this is the Blavatnik National Awards program, and the broad range of scientists it recognizes.”
Shruti Puri, PhD, helps explain the challenges and the potential computational power this exciting new technology may bring about.
Published March 22, 2021
By Liang Dong, PhD
Shruti Puri, PhD, Yale University
Quantum computing is a radically new way to store and process information based on the principles of quantum mechanics. While conventional computers store information in binary “bits” that are either 0s or 1s, quantum computers store information in quantum bits, or qubits. A qubit can be both 0 and 1 at the same time, and a series of qubits together remember many different things simultaneously.
Everyone agrees on the huge computational power this technology may bring about, but why are we still not there yet? To understand the challenges in this field and its potential solutions, we recently interviewed Shruti Puri, PhD, who works at the frontier of this exciting field. Puri is an Assistant Professor in the Department of Applied Physics at Yale University, and a Physical Sciences & Engineering Finalist of the 2020 Blavatnik Regional Awards for Young Scientists, recognized for her remarkable theoretical discoveries in quantum error correction that may pave the way for robust quantum computing technologies.
What is the main challenge you are addressing in quantum computing?
Thanks to recent advances in research and development, there are already small to mid-sized quantum computers made available by big companies. But these quantum computers have not been able to implement any practical applications such as drug and materials discovery. The reason is that quantum computers at this moment are extremely fragile, and even very small noise from their working environment can very quickly destroy the delicate quantum states. As it is almost impossible to completely isolate the quantum states from the environment, we need a way to correct quantum states before they are destroyed.
At a first glance, quantum error correction seems impossible. Due to the measurement principle of quantum mechanics, we cannot directly probe a quantum state to check if there was an error in it or not, because such operations will destroy the quantum state itself.
Fortunately, in the 1990s, people found indirect ways to faithfully detect and correct errors in quantum states. They are, however, at a cost of large resource overheads. If one qubit is affected by noise, we have to use at least five additional qubits to correct this error. The more errors we want to correct, the larger number of additional qubits it will consume. A lot of research efforts, including my own, are devoted to improving quantum error correction techniques.
What is your discovery? How will this discovery help solve the challenge you mention above?
In recent years, I have been interested in new qubit designs that have some in-built protection against noise. In particular, I developed the “Kerr-cat” qubit, in which one type of quantum error is automatically suppressed by design. This reduces the total number of quantum errors by half! So, quantum computers that adopt Kerr-cat require far fewer physical qubits for error correction than the other quantum computers.
Kerr-cat is not the only qubit with this property, but what makes the Kerr-cat special is that it is possible to maintain this protection while a user tries to modify the quantum state in a certain non-trivial way. As a comparison, for ordinary qubits, the act of the user modifying the state automatically destroys the protection. Since its discovery, the Kerr-cat has generated a lot of interest in the community and opened up a new direction for quantum error correction.
As a theoretician, do you collaborate with experimentalists? How are these synergized efforts helping you?
Yes, I do collaborate quite closely with experimentalists. The synergy between experiments and theory is crucial for solving the practical challenges facing quantum information science. Sometimes an experimental observation or breakthrough will provide a new tool for a theorist with which they can explore or model new quantum effects. Other times, a new theoretical prediction will drive experimental progress.
At Yale, I have the privilege to work next to the theoretical group of Steve Girvin and the experimental groups of Michel Devoret and Rob Schoelkopf, who are world leaders in superconducting quantum information processing. The theoretical development of the Kerr-cat qubit was actually a result of trying to undo a bug in the experiment. Members of Michel’s group also contributed to the development of this theory. What is more, Michel’s group first experimentally demonstrated the Kerr-cat qubit. It was just an amazing feeling to see this theory come to life in the lab!
Are there any other experimental developments that you are excited about?
I am very excited about a new generation of qubits that are being developed in several other academic groups, which have some inherent protection against noise. Kerr-cat is one of them, along with Gottesman-Kitaev-Preskill qubit, cat-codes, binomial codes, 0−π qubit, etc. Several of these designs were developed by theorists in the early 2000s, and were not considered to be practical. But with experimental progress, these have now been demonstrated and are serious contenders for practical quantum information processing. In the coming years, the field of quantum error correction is going to be strongly influenced by the capabilities that will be enabled by these new qubit designs. So, I really look forward to learning how the experiments progress.
We’re going to the Moon—again! In the next decade, NASA’s Artemis program will first orbit and then land on the lunar surface. What may seem like a rerun from the 1960s is designed to establish a more permanent human presence on the Moon. This will be used for both scientific and private aims, and it may serve as a stepping-stone to Mars. In this eBriefing, we’ll learn more about what’s planned, what we gain from human space exploration, and how we establish international agreements off-planet.
In this eBriefing, You’ll Learn:
NASA’s plans for the Artemis mission
Open research questions that will be addressed through exploration in deep space
Which international agreements are currently in place to help navigate governance in space
How space exploration affects life on Earth
Speakers
Timiebi Aganaba-Jeanty, PhD, LLM Arizona State University
Dina Contella NASA
Dorit Donoviel, PhD Translational Research Institute for Space Health, Baylor College of Medicine
Moderator:
Kari Fischer, PhD The New York Academy of Sciences
Our Lunar Future
Timiebi Aganaba-Jeanty, PhD, LLM
Arizona State University
Timiebi Aganaba, PhD, LLM, is an assistant professor in the School for the Future of Innovation in Society with a courtesy appointment at the Sandra Day O’Connor College of Law. She is a fellow at the Centre for International Governance Innovation (CIGI) based in Waterloo, Ontario, Canada. Dr. Aganaba was previously executive director of the World Space Week Association, coordinating the global response to the United Nations 1999 declaration that World Space Week should be celebrated from Oct 4-10 annually. Dr. Aganaba was a space industry consultant for the leading space analyst firm in Montreal, Canada, a teaching associate at the International Space University in France, an associate at the Nigerian law firm Kayode Sofola and Associates, and a trainee legal officer at the Nigerian Space Research and Development Agency. In 2017, Dr. Aganaba was the recipient of a Space Leaders Award from the International Astronautical Federation (IAF). Her doctorate received the George and Ann Robinson Award for advanced research capabilities.
Dina Contella
NASA
Dina Contella’s tenure at NASA began while she was still in school through the cooperative education program in 1990. After graduating from Texas A&M University, Contella worked as an astronaut instructor specializing in the Shuttle onboard computers and software, as well as entry and landing navigation aids. Beginning in 1995, she served as a space shuttle and space station flight controller and instructor responsible for planning, training, and executing spacewalks. She subsequently served as the lead Extravehicular Activity Officer (EVA) liaison to Russia during early station construction. After the Columbia accident, she was instrumental in developing shuttle Thermal Protection System (TPS) repair tools and techniques. And in her nine years as Mission Control Flight Director, Contella oversaw the well-being of the International Space Station, space shuttles, and their crews for a host of missions, leading teams of people operating vehicle systems and guiding astronauts building the space station, performing research, and maintaining it both inside and out. Now the Gateway Program’s manager for operations integration and utilization, she uses her experience in operational leadership and risk management to develop how to best use the Gateway’s capabilities and plan for astronaut missions on the Moon.
Dorit Donoviel, PhD
Translational Research Institute for Space Health Baylor College of Medicine
As director for the Translational Research Institute for Space Health (TRISH), Dorit Donoviel, PhD, leads a $0.25B NASA-funded innovation R&D program that finds, funds, and facilitates disruptive human health and performance solutions for astronauts traveling in deep space. In her previous role as deputy chief scientist of the National Space Biomedical Research Institute (NSBRI), Dr. Donoviel led both domestic and international research programs that bridged academic, industry, and government resources to deliver fast and cost-effective tangible results. She is the recipient of multiple honors, including recognition from NASA and the NSBRI Pioneer Award. A published research scientist and invited speaker, Dr. Donoviel is Associate Professor in the Department of Pharmacology and Chemical Biology and the Center for Space Medicine at Baylor College of Medicine (BCM). Before joining BCM, she led metabolism drug discovery programs at Lexicon Pharmaceuticals for eight years. Dr. Donoviel completed a Human Frontiers postdoctoral fellowship at Mount Sinai Hospital in Toronto, Canada; holds a Biochemistry doctorate from the University of Washington in Seattle, WA; and received her baccalaureate degree in Biochemistry and Cell Biology from the University of California, San Diego in La Jolla, CA.
Kari Fischer, PhD
New York Academy of Sciences
Kari Fischer, PhD, is a Senior Program Manager for Life Sciences at the Academy, facilitating the planning and execution of both scientific symposia and programming for the general public. Her portfolio of programming spans biomedicine—from microsatellite DNA expansions to hearing restoration to cancer metabolism. Kari has also led several events on the interface between science and society, including a series of bioethics colloquia on randomized controlled trials, big data in healthcare, and conflict of interest; and several programs on science misinformation and science engagement with the public. Her contributions were featured at South by Southwest 2019 in the panel, “Preventing the Cambridge Analytica of Health Data.” Her science writing has appeared in The Washington Post, The Scientist, and The New York Academy of Sciences Magazine. Dr. Fischer joined the Academy in 2016 after completing her PhD in Cell and Developmental Biology at Weill Cornell Medicine, where she studied breast cancer metastasis and the lung tumor microenvironment. For her work in lung cancer, she was awarded the Ruth L. Kirchstein National Research Service Award Individual Predoctoral Fellowship by the National Institutes of Health. She received the Julian R. Rachele Prize for Outstanding Graduate Student Research for her breast cancer metastasis study in Nature, an article with over 500 citations since its publication. Dr. Fischer’s undergraduate degree in Biochemistry and Molecular Biology is from the University of Massachusetts, Amherst.
Previous conferences and workshops covering artificial intelligence (AI) for Materials Science have mainly focused on introducing AI into materials simulations, which is only the first step in new materials discovery. These efforts have largely ignored AI’s promise for materials synthesis and translating research into high-volume industrial production.
On October 6-7, 2020, the New York Academy of Sciences hosted the AI for Materials symposium to provide a broader perspective on leveraging the benefits of AI in material simulations, experiments, and development efforts for high volume production. The symposium brought together materials scientists, industry experts, and AI researchers to cover the application of AI throughout the entire life cycle of new materials, from lab discovery to industrial production. These leaders also shape future research directions, identify urgent issues in this rising field, and foster interdisciplinary collaboration opportunities.
In This eBriefing, You’ll Learn
How machine learning is being applied to understand the physical processes behind materials science
Approaches to improve the data infrastructures used in materials science research to facilitate easier integration and promote a better data sharing environment
How AI is being applied to address industry-related issues in materials science, including the scalability of materials production from the lab to the factory and the synthetic and catalytic routes of new materials
Speakers
Muratahan Aykol, PhD Toyota Research Institute
Léon Bottou, PhD Facebook AI Research
Carla Gomes, PhD Cornell University
Philipp Harbach, PhD Merck KGaA
Michael Helander, PhD OTI Lumionics
Phillip M. Maffettone, DPhil Brookhaven National Laboratory
Nobuyuki N. Matsuzawa, PhD Panasonic Corporation
Greg Mulholland Citrine Informatics
Elsa Olivetti MIT
Rampi Ramprasad, PhD Georgia Institute of Technology
Tim Robertson, PhD Schrödinger, Inc.
Sam Samdani, PhD McKinsey & Company
Matthias Scheffler, PhD The Fritz Haber Institute
Rama Vasudevan, PhD Oak Ridge National Laboratory
James Warren, PhD National Institute of Standards and Technology
Léon received a Ph.D. in Computer Science from Université de Paris-Sud. His research career has taken him to AT&T Bell Laboratories, AT&T Labs Research, NEC Labs America, Microsoft, and now Facebook AI Research. The long-term goal of Léon’s research is to understand and replicate human-level intelligence. Because this goal requires conceptual advances that cannot be anticipated, Léon’s research has followed many practical and theoretical turns, including neural networks applications, stochastic gradient learning algorithms, statistical properties of learning systems, computer vision applications with structured outputs, and theory of large-scale learning. Léon’s research aims to clarify the relation between learning and reasoning, with focus on the many aspects of causation.
Carla Gomes, PhD
Cornell University
Carla is the Ronald C. and Antonia V. Nielsen Professor of Computing and Information Science and the Director of the Institute for Computational Sustainability at Cornell University. She received a Ph.D. from the University of Edinburgh. Her research area is artificial intelligence with a focus on Computational Sustainability. Computational Sustainability aims to develop computational methods to help solve some of the key challenges concerning environmental, economic, and societal issues to help put us on a path towards a sustainable future. Carla is a Fellow of the Association for the Advancement of Artificial Intelligence (AAAI), a Fellow of the Association for Computing Machinery (ACM), and a Fellow of the American Association for the Advancement of Science (AAAS).
Rama Vasudevan, PhD
Oak Ridge National Laboratory
Rama is the Research and Development Associate at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory. His research focuses on utilizing scanning probe microscopy (SPM) at the mesoscopic and atomic level to unearth structure-property relations in various systems, including ferroics, manganites, and others. In parallel, as vast amounts of imaging and spectroscopic data are gathered, he develops and implements tools from existing computational science literature towards tackling materials science problems and unearthing physics from deep data analysis of SPM-acquired datasets. Rama received his PhD in Materials Science from the University of New South Wales.
Rampi Ramprasad, PhD Georgia Institute of Technology
Matthias Scheffler, PhD The Fritz Haber Institute
Elsa Olivetti MIT
Muratahan Aykol, PhD Toyota Research Institute
Rampi Ramprasad, PhD
Georgia Institute of Technology
Rampi is the Michael E. Tennenbaum Family Chair and Georgia Research Alliance Eminent Scholar in Energy Sustainability at Georgia Tech. His area of expertise is developing and utilizing computational and data-driven (machine learning) methods to design and discover new materials. Materials classes under study include polymers, metals, and ceramics (mainly dielectrics and catalysts), and application areas include energy production and energy storage. Rampi received his B Tech in Metallurgical Engineering at the Indian Institute of Technology, Madras, India, and a PhD in Materials Science & Engineering at the University of Illinois, Urbana-Champaign.
Matthias Scheffler, PhD
The Fritz Haber Institute
Matthias is Director of the NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society. His research focuses on understanding fundamental aspects of physical and chemical properties of surfaces, interfaces, clusters, nanostructures, and bulk based on electronic-structure theory. In recent years, Matthias developed neural-network and compressed-sensing methods to detect structure and patterns in “big data of materials,” to create “maps of materials properties,” and identify “materials genes” that affect or even actuate materials properties. His “big-data” activities also include creating a FAIR data infrastructure (data are findable and AI-ready) and the largest data store for computational materials science data.
Elsa Olivetti, PhD
Massachusetts Institute of Technology
Elsa is the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering at MIT. She received her PhD from the same department in 2007. Elsa’s research focuses on improving the environmental and economic sustainability of materials in the context of rapid-expanding global demand. Her research addresses two major problems where solutions could yield significant environmental benefit: first, improving the sustainability of materials through increased use of recycled and renewable materials, recycling-friendly material design, and intelligent waste disposition; and second, understanding the implications of substitution, dematerialization, and waste mining on materials markets. Her research spans three levels of materials production: operational-level, industrial network-level, and market-level strategies.
Muratahan Aykol, PhD
Toyota Research Institute
Muratahan is a Senior Research Scientist in Accelerated Materials Design and Discovery at the Toyota Research Institute. Before that, he was a postdoctoral research fellow at Lawrence Berkeley National Laboratory, working on materials informatics and infrastructure. He received his BS and MS degrees from the Middle East Technical University and a PhD in Materials Science from Northwestern University. His research focuses on machine-learning, material computations, and network science for materials discovery.
Phillip M. Maffettone, DPhil Brookhaven National Laboratory
Nobuyuki N. Matsuzawa, PhD
Panasonic Corporation
Nobu obtained his PhD in computational materials science in 1994 from The University of Tokyo. He started his career at Sony in 1987, developing various organic materials for electronic devices and lithography processes for semiconductor manufacturing. He served as a visiting research scientist at DuPont Central Research and Development in Wilmington, Delaware, and was the Senior Manager of Material Science Laboratories of Sony Europe from 2001-2004. In 2005, Nobu was named a Distinguished Engineer at Sony. Since 2016, he has been working for Panasonic, designing materials used in various electronic devices produced by Panasonic.
Michael Helander, PhD
OTI Lumionics
Michael is co-founder and CEO of OTI Lumionics, an advanced materials company he co-founded while pursuing his PhD at the University of Toronto in 2011. The company commercializes disruptive materials and process technology for OLED displays from headquarters in Toronto and offices in Asia. OLED is the leading display technology used in virtually all high-end consumer electronics and is the next generation of design-driven lighting. Dr. Helander received a BSc in Engineering Science and a PhD in Materials Science & Engineering from the University of Toronto. He has over 100 patents and peer-reviewed publications related to OLED materials, process, equipment, and displays.
Phillip M. Maffettone, DPhil
Brookhaven National Laboratory
Phil is currently a Research Associate in Computational Science at Brookhaven National Laboratory, where he focuses on developing the laboratory of the future using artificial intelligence to combine simulation and autonomous experimentation. During his career, Phil has developed a healthy disregard for disciplinary boundaries by working at the intersection of physical and computational sciences. He earned a BS in Chemical Engineering at the University at Buffalo (2014), researching silicon nanoparticle synthesis and applications. After receiving a Marshall Scholarship, he completed his DPhil in Inorganic Chemistry at the University of Oxford (2018), focused on simulating disorder in diffraction where Bragg’s law breaks down in hard and soft matter. Phil recently returned home to New York from a role at the University of Liverpool, where he developed the AI for an autonomous mobile robotic scientist searching for new photocatalytic materials.
James Warren, PhD National Institute of Standards and Technology
Greg Mulholland Citrine Informatics
Tim Robertson, PhD Schrödinger, Inc.
Sam Samdani, PhD
McKinsey & Company
Sam is a senior industry expert in the Global Chemicals & Agriculture Practice at McKinsey & Company, a global management consulting firm. His responsibilities include providing thought leadership across a range of complex knowledge domains in advanced/engineered materials, pharmaceutical ingredients, and specialty chemicals for the top management of many multinational chemical, pharmaceutical, and petroleum companies as well as government agencies and NGOs worldwide. Before joining McKinsey, Sam worked at McGraw-Hill as an Associate Editor with Chemical Engineering, a monthly technical publication. He received his BS in chemical engineering from Yale University and his PhD in chemical engineering from the University of Rochester.
Philipp Harbach, PhD
Merck KGaA
Philipp is the Head of In Silico Research in the Digital Organization of Merck KGaA. There he focuses on the digitalization of chemical and experimental processes in R&D, production, and analytics with the help of modern computational modeling and data analytics methods. He is specifically interested in applying quantum mechanical methods to industrial problems and is leading first initiatives to adapt these algorithms to noisy intermediate-scale quantum computers as part of the Merck Quantum Computing Task Force.
James Warren, PhD
National Institute of Standards and Technology
Since 2010, Jim has been focusing his energies on the US Materials Genome Initiative, a multi-agency initiative designed to create a new era of policy, resources, and infrastructure that supports US institutions to discover, manufacture, and deploy advanced materials twice as fast a fraction of the cost. As Director of the NIST Materials Genome Program, he works with a government-wide team to build out the materials innovation infrastructure need to realize the initiative’s goals. He is also one of the co-founders and the current Director of the NIST Center for Theoretical and Computational Materials Science. Jim has a PhD in physics from the University of California, Santa Barbara.
Greg Mulholland
Founder and CEO, Citrine Informatics
Greg is the co-founder and CEO of Citrine Informatics and a recognized leader in the use of digital tools and digitization practices in the development of next-generation materials and chemicals products and the creation of next-generation business models. Under his leadership, Citrine has been recognized as a WEF Technology Pioneer, a member of the Cleantech 100, the World Materials Forum Startup of the Year, and CB Insights AI 100 in 2017 and 2020. Greg holds a BS in Electrical Engineering and a BS in Computer Engineering from NC State University, an MPhil in Materials Science from Cambridge University, and an MBA from Stanford University.
Tim Robertson, PhD
Schrödinger, Inc.
Tim is a full-stack software engineer with a doctorate in computational biology and extensive experience in applied machine learning. He worked as a data scientist for companies such as Twitch and Yelp and founded two YCombinator-funded startups. Currently, Tim is Principal Scientist at Schrödinger, where he works in a hybrid scientist/engineer role, developing and applying deep learning and other AI techniques to problems in rational drug design. He has a PhD in Computational Biology (Biochemistry) from the University of Washington.